National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Dynamic impact wear and impact resistance of W-B-C coatings
Daniel, Josef ; Grossman, Jan ; Buršíková, V. ; Zábranský, L. ; Souček, P. ; Mirzaei, S. ; Vašina, P.
Coated components used in industry are often exposed to repetitive dynamic impact load. The dynamic impact test is a suitable method for the study of thin protective coatings under such conditions. Aim of this paper is to describe the method of dynamic impact testing and the novel concepts of evaluation of the impact test results, such as the impact resistance and the impact deformation rate. All of the presented results were obtained by testing two W-B-C coatings with different C/W ratio. Different impact test results are discussed with respect to the coatings microstructure, the chemical and phase composition, and the mechanical properties. It is shown that coating adhesion to the HSS substrate played a crucial role in the coatings.
W-B-C Nanostructured Layers - Microstructure and Mechanical Properties
Buršík, Jiří ; Kuběna, Ivo ; Buršíková, V. ; Souček, P. ; Zábranský, L. ; Mirzaei, S. ; Vašina, P.
Several W-B-C layers were prepared by magnetron sputtering. The microstructure of thin layers was observed by means of scanning and transmission electron microscopy on cross sections prepared using a focused ion beam. Both undisturbed layers and the volume under indentation prints were inspected.
Impact resistence on nanocomposite Mo-B-C- and W-B-C coatings deposited using magnetron sputtering technique
Fořt, Tomáš ; Grossman, Jan ; Daniel, Josef ; Sobota, Jaroslav ; Dupák, Libor ; Buršíková, V. ; Zábranský, L. ; Souček, L. ; Mirzaei, S. ; Alishahi, M. ; Vašina, P. ; Buršík, Jiří
Recently, based on attractive mechanical properties of boride and carbide based X2BC ternary compounds (X = Mo, W and Ta) they became subjects of both theoretical calculations and experimental work. In the case of stoichiometric composition, X2BC with X = Mo, W and Ta are very promising candidates for protection of cutting and forming tools due to their unusually stiffness and moderate ductility.\nIn this work we focus on nanostructured Mo-B-C and W-B-C layers grown by magnetron sputtering on high speed steel (HSS) substrates. Mechanical properties of the layers were characterized by nanoindentation experiments in both static and dynamic loading regimes. Elastic modulus, indentation hardness and fracture resistance were evaluated and discussed. The fracture resistance of both Mo-B-C and W-B-C coatings was compared using both indentation and dynamic impact tests.\n

Interested in being notified about new results for this query?
Subscribe to the RSS feed.