National Repository of Grey Literature 115 records found  beginprevious62 - 71nextend  jump to record: Search took 0.02 seconds. 
Conceptual design of a precision manipulator
Stuchlík, Petr ; Pavlík, Jan (referee) ; Vetiška, Jan (advisor)
This diploma thesis deals with the problems of analysis and the subsequent design of a precision manipulator used as a microscope table. The first part od the final thesis deals with the problems associated with the movement of the test sample within the electron microscope. Subsequently, possiblle design variants were proposed, further developing the next steps fot the correctness and functionality of manipulator. The individual force loads of the components were calculated. The result of the work was constructed as a CAD model with subsequent transfer to the assembly drawing.
Experimental electromagnetic acceleration device with more stages
Kovařík, Martin ; Červinka, Dalibor (referee) ; Martiš, Jan (advisor)
This master thesis deals with design and realization of multistage electromagnetic accelerating device (gun) and possibilities to increase its effectivity. This work contains a simulation of a magnetic circuit and designs of each components, inclusive of control circuits. Reached effectivity will be measured by appropriate methods.
Electromagnetic power actuators
Kadlecová, Lucie ; Vorel, Pavel (referee) ; Patočka, Miroslav (advisor)
This master thesis focuses on literature research of problematics linked to power actuators working on electromagnetic principle to accelerate metal projectiles. It’s goal is mathematical analysis and constuction of selected type of electromagntic power actuator – induction coilgun
Electronic structure and magnetic properties of the materials with strong electron-electron correlation
Kozub, Agnieszka Lidia ; Shick, Alexander (advisor) ; Legut, Dominik (referee) ; Minár, Ján (referee)
In this thesis, we summarize the material-specific theories of strongly correlated systems and apply them to selected materials. We describe and apply the corre- lated band theory methods: the local density approximation plus Coulomb U, and the density functional theory plus exact diagonalization of single impurity An- derson model. First, we investigate the systems containing impurity atoms: cobalt impurity located in the bulk copper and samarium, and neodymium adatoms on the surface of graphene. We present the spectral densities and study the magnetism of those compounds. Afterwards, we analyze three Np-based compounds: NpPt2In7, Np2Ni17 and NpBC. For all three compounds we analyze the spin, orbital and to- tal magnetic moments and the total density of states, as well as its projections for selected orbitals and spins. Moreover, for NpPt2In7 and NpBC we perform the to- tal energy analysis between different magnetic moment arrangements on the Np atoms.
Optical response of magnetic materials
Wagenknecht, David ; Ostatnický, Tomáš (advisor)
David Wagenknecht: Abstract of a diploma thesis Optical response of magnetic materials, 2014 Magnetooptical properties of anisotropic semiconductors are studied to describe asymmetry of Ga1−xMnxAs, because theoretical calculations predict extraordinary behaviour of reflectivity. Analytical formulae to describe materials with non-diagonal permittivity are derived and they are used for the numerical calculations to describe the optical response of the samples available for the measurement. The transversal Kerr effect is calculated and it exhibits asymmetry in both rotation of the plane of polarization and ellipticity of circularly polarized light due to asymmetry in reflectivity. Moreover, longitudinal and polar magnetization are studied because of the influence on the observability of the phenomena. Results are not only used to discuss conditions, which must be satisfied to prove the asymmetry, but also the actual experimental setup is designed to prepare the measurement. 1
Preparation and characterization of substituted Y ferrites in the form of ceramics and thin films
Pulmannová, Dorota ; Nižňanský, Daniel (advisor) ; Prokleška, Jan (referee)
Title: Preparation and characterization of substituted Y ferrites in the form of ceramics and thin films Author: Dorota Pulmannová Department: Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague Supervisor: RNDr. Daniel Nižňanský, Ph.D. Consultant: Ing. Josef Buršík, CSc. Abstract: In this work we describe a preparation and characterization of a hexagonal ferrite series with composition BaSrCoZnXFe11O22 where X=Fe, Al, Ga, In and Sc. We have prepared these ferrites in the powder and ceramic form using the citrate synthesis and in the thin film form using the chemical solution deposition method. Using the powder neutron diffraction we have found that the sample containing only Fe has collinear magnetic structure that belongs to the C2/m or C2'/m' group. Magnetic structure of the samples substituted with In and Sc is similar, but the magnetic moments of the 18hVI site atoms are not aligned parallely with the other moments. Magnetic structure of Ga-substituted sample is different, it is modulated with a propagation vector k ≈ (0, 0, 3/4). Propagation vector of the Al-substituted ferrite is k ≈ (0, 0, 3/2). Substituting elements show strong preferences for the cation sites. Al and Ga prefer the 3bVI site, Zn prefers the tetrahedral 6cIV and In and Sc prefer the 6cVI site. Room...
Magnetic excitations in cerium compounds
Vlášková, Kristina ; Javorský, Pavel (advisor) ; Prchal, Jiří (referee)
Title: Magnetic excitations in cerium compounds Author: Kristina Vlášková Department: Department of Condensed Matter Physic Supervisor: doc. Mgr Pavel Javorský, Dr., Department of Condensed Matter Physics Abstract: Thanks to presence of only one electron in 4f shell of cerium ion, Ce based compounds reveal wide range of exceptional magnetic properties like valence fluctuations, magnetic ordering or spin glass behavior. In present thesis we mainly focus on tetragonal CeCuxAl4-x system and its magnetic behavior. Former results of inelastic neutron experiments opened discussion about energy levels of cerium ions in CeCuAl3. Except two crystal field excitations also one additional energy level was present, phenomenon of vibron quasi-bound state was proposed to explain observed energy structure. Measurement and analysis of specific heat and neutron inelastic scattering on compounds with various Cu content should help to understand phenomenon of vibron state and also its development with Cu/Al concentration. Another two types of cerium compounds will be investigated in means of specific heat and resistivity measurement, polycrystalline sample of CePt4Al and single crystal of Ce3Ru4Al12. Preparation, characterization and measurement of low temperature properties are subjects of this work. Results will be discussed...
Magneto-optic response of layered media
Kunt, Ota ; Ostatnický, Tomáš (advisor) ; Antoš, Roman (referee)
Optical response of materials strongly depends on their magnetic properties. This phenomenon is also used in materials in the form of thin layers and multi- layers. Using cited literature we summarize theory needed to calculate magneto- optical response of multilayers. The calculation is based on Maxwell equations and magnetic materials are described with effective permittivity tensor. Jones formalism is used to describe polarised light and Yeh formalism is used to de- scribe multilayer response. A program using presented theory was developed and calculations for concrete structure were made. Multilayer parameters were cho- sen to correspond with those of a sample whose magneto-optical response was measured at the Department of Chemical Physics and Optics, MFF UK. 1
Nanostructures and Materials for Antiferromagnetic Spintronics
Reichlová, Helena ; Novák, Vít (advisor) ; Ferguson, Andrew (referee) ; Kunc, Jan (referee)
This thesis is focused on two open problems of antiferromagnetic (AFM) spintronics: manipulation of AFM coupled moments and development of new materials combining AFM and semiconductor properties. We present three particular methods enabling AFM moments manipulation. The rst method, based on the exchange spring effect in an AFM/FM double layer, strongly de- pends on the AFM layer thickness and temperature. We systematically vary these two parameters and identify the conditions when AFM moments can be manip- ulated. By the second method, cooling an AFM in a magnetic eld through the critical temperature, we prove the concept of a fully AFM-based (containing no FM) spintronic device. The last studied method is based on current induced effects in nanostructures containing an AFM. By systematic study of samples with and without AFM we demonstrate the ability of AFM moments to absorb a current induced torque. Relying neither on a FM nor on cooling in magnetic eld, this method represents an elegant way of AFM moments manipulation. In the second experimental part new materials for AFM spintronics are discussed, and one representative example, CuMnAs, is studied in detail. Characterization of bulk and epitaxial CuMnAs is presented and rst spintronic functionality is shown. Powered by TCPDF (www.tcpdf.org)
Electron properties of the substituted cerium compounds
Klicpera, Milan ; Javorský, Pavel (advisor) ; Hiess, Arno (referee) ; Michor, Herwig (referee)
Title: Electron properties of the substituted cerium compounds Author: Milan Klicpera Department: Department of Condensed Matter Physics Supervisor: doc. Mgr. Pavel Javorský Dr. Abstract: The subject of this work is the study of vibron states in tetragonal CeCuAl3 and CePd2Al2 compounds and their development with the substitution of constituent elements. After the preparation of single crystals and polycrystalline samples, the careful chemical and structural characterization was done. The structural, magnetic and superconducting phase transitions in samples were observed and thoroughly investigated. The crucial experiments were performed using the elastic and inelastic neutron scattering techniques leading to the refinement of magnetic structures in CeCuAl3, CePd2Al2 and CePd2Ga2. The energy spectra of substituted Ce(Cu,Al)4 and CePd2(Al,Ga)2 compounds were studied as well allowing to determine the crystal field excitations and their interaction with phonons (vibron states) in these materials. Keywords: cerium internetallic compounds, vibron states, electronic properties, neutron scattering

National Repository of Grey Literature : 115 records found   beginprevious62 - 71nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.