National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Evolutionary Algorithms for Neural Networks Learning
Vosol, David ; Rozman, Jaroslav (referee) ; Zbořil, František (advisor)
Main point of this thesis is to find and compare posibilities of cooperation between evolutionary algorithms and neural network learning and their comparison with classical learning technique called backpropagation. This comparison is demonstrated with deep feed-forward neural network which is used for classification tasks. The process of optimalization is via search of optimal values of weights and biases within neural network with fixed topology. We chose three evolutionary approaches. Genetic algorithm, differential evolution and particle swarm optimization algorithm. These three approaches are also compared between each other. The demonstrating program is implemented in Python3 programming language without usage of any third parties libraries focused on deep learning.