National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Optimization of Delayed Differential Systems by Lyapunov's Direct Method
Demchenko, Hanna ; Růžičková, Miroslava (referee) ; Shatyrko,, Andriy (referee) ; Diblík, Josef (advisor)
Dizertační práce se zabývá procesy, které jsou řízeny systémy zpožděných diferenciálních rovnic $$x'(t) =f(t,x_t,u),\,\,\,\, t\ge t_{0}$$ kde $t_0 \in \mathbb{R}$, funkce $f$ je definována v jistém podprostoru množiny $[t_0,\infty)\times {C}_{\tau}^{m}\times {\mathbb{R}}^r$, $m,r \in \mathbb{N}$, ${C}_{\tau}^{m}=C([-\tau,0],{\mathbb{R}}^{m})$, $\tau>0$, $x_t(\theta):=x(t+\theta)$, $\theta\in[-\tau,0]$, $x\colon [t_0-\tau,\infty)\to \mathbb{R}^{m}$. Za předpokladu $f(t,\theta_m^*,\theta_r)=\theta_m$, kde ${\theta}_m^*\in {C}_{\tau}^{m}$ je nulová vektorová funkce, $\theta_r$ a $\theta_m$ jsou $r$ a $m$-dimenzionální nulové vektory, je říd\'{i}cí funkce $u=u(t,x_t)$, $u\colon[t_0,\infty)\times {C}_{\tau}^{m}\to \mathbb{R}^{r}$, $u(t,{\theta}_m^*)=\theta_r$ určena tak, že nulové řešení $x(t)=\theta_m$, $t\ge t_{0}-\tau$ systému je asymptoticky stabilní a pro libovolné řešení $x=x(t)$ integrál $$\int _{t_{0}}^{\infty}\omega \left(t,x_t,u(t,x_t)\right)\diff t,$$ kde $\omega$ je pozitivně definitní funkcionál, existuje a nabývá své minimální hodnoty v daném smyslu. Pro řešení tohoto problému byla Malkinova metoda pro obyčejné diferenciální systémy rozšířena na zpožděné funkcionální diferenciální rovnice a byla použita druhá metoda Lyapunova. Výsledky jsou ilustrovány příklady a aplikovány na některé třídy zpožděných lineárních diferenciálních rovnic.
Weakly Delayed Systems of Linear Discrete Equations in R^3
Šafařík, Jan ; Khusainov, Denys (referee) ; Růžičková, Miroslava (referee) ; Diblík, Josef (advisor)
Dizertační práce se zabývá konstrukcí obecného řešení slabě zpožděných systémů lineárních diskrétních rovnic v ${\mathbb R}^3$ tvaru \begin{equation*} x(k+1)=Ax(k)+Bx(k-m), \end{equation*} kde $m>0$ je kladné celé číslo, $x\colon \bZ_{-m}^{\infty}\to\bR^3$, $\bZ_{-m}^{\infty} := \{-m, -m+1, \dots, \infty\}$, $k\in\bZ_0^{\infty}$, $A=(a_{ij})$ a $B=(b_{ij})$ jsou konstantní $3\times 3$ matice. Charakteristické rovnice těchto systémů jsou identické s charakteristickými rovnicemi systému, který neobsahuje zpožděné členy. Jsou získána kriteria garantující, že daný systém je slabě zpožděný a následně jsou tato kritéria specifikována pro všechny možné případy Jordanova tvaru matice $A$. Systém je vyřešen pomocí metody, která ho transformuje na systém vyšší dimenze, ale bez zpoždění \begin{equation*} y(k+1)=\mathcal{A}y(k), \end{equation*} kde ${\mathrm{dim}}\ y = 3(m+1)$. Pomocí metod lineární algebry je možné najít Jordanovy formy matice $\mathcal{A}$ v závislosti na vlastních číslech matic $A$ and $B$. Tudíž lze nalézt obecné řešení nového systému a v důsledku toho pak odvodit obecné řešení počátečního systému.
Representation of Solutions of Linear Discrete Systems with Delay
Morávková, Blanka ; Růžičková, Miroslava (referee) ; Khusainov, Denys (referee) ; Diblík, Josef (advisor)
Disertační práce se zabývá lineárními diskrétními systémy s konstantními maticemi a s jedním nebo dvěma zpožděními. Hlavním cílem je odvodit vzorce analyticky popisující řešení počátečních úloh. K tomu jsou definovány speciální maticové funkce zvané diskrétní maticové zpožděné exponenciály a je dokázána jejich základní vlastnost. Tyto speciální maticové funkce jsou základem analytických vzorců reprezentujících řešení počáteční úlohy. Nejprve je uvažována počáteční úloha s impulsy, které působí na řešení v některých předepsaných bodech, a jsou odvozeny vzorce popisující řešení této úlohy. V další části disertační práce jsou definovány dvě různé diskrétní maticové zpožděné exponenciály pro dvě zpoždění a jsou dokázány jejich základní vlastnosti. Tyto diskrétní maticové zpožděné exponenciály nám dávají možnost najít reprezentaci řešení lineárních systémů se dvěma zpožděními. Tato řešení jsou konstruována v poslední kapitole disertační práce, kde je řešení tohoto problému dáno pomocí dvou různých vzorců.
Weakly Delayed Linear Planar Systems of Discrete Equations
Halfarová, Hana ; Růžičková, Miroslava (referee) ; Khusainov, Denys (referee) ; Diblík, Josef (advisor)
Dizertační práce se zabývá slabě zpožděnými lineárními rovinnými systémemy s konstantními koeficienty. Charakteristická rovnice těchto systémů je identická s charakteristickou rovnicí systému, který neobsahuje zpožděné členy. V takovém případě se počáteční dimenze prostoru řešení mění po několika krocích na menší. V jistém smyslu je tato situace analogická podobnému jevu v teorii lineárních diferenciálních systémů s konstantními koeficienty a speciálním zpožděním, kdy původně nekonečně rozměrný prostor řešení (na počátečním intervalu) přejde po několika krocích do konečného prostoru řešení. V práci je pro každý možný případ kombinace kořenů charakteristické rovnice konstruováno obecné řešení daného systému a jsou formulovány výsledky o dimenzi prostoru řešení. Také je zkoumána stabilita řešení.
Estimation of Solutions of Differential Systems with Delayed Argument of Neutral Type
Baštincová, Alena ; Růžičková, Miroslava (referee) ; Dzhalladova,, Irada (referee) ; Diblík, Josef (advisor)
Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského.
Solution of difference equations and relation with Z-transform
Klimek, Jaroslav ; Smékal, Zdeněk (referee) ; Růžičková,, Miroslava (referee) ; Diblík, Josef (advisor)
This dissertation presents the solution of difference equations and focuses on a method of difference equations solution with the aid of eigenvectors. The first part reminds the basic terms from area of difference equations such as dynamic of difference equations and linear difference equations of first order and higher order. Then the second section recalls also the system of difference equations including the fundamental matrix and general solution description. Afterthat, the method of solving the difference equations with a variation of constants and transform of scalar equations to the system are shown. The second part of the dissertation analyses some known algorithms and methods for the solution of linear difference equations. The Z-transform, its importance and usage for finding the solution of difference equation is recalled. Then the discrete analogue of Putzer's algorithm is mentioned because this algorithm was often used to check the results obtained by the newly described algorithm in further parts of this thesis. Also some ways of the system matrix power are stated. The next section then describes the principle of Weyr's method which is the basic point for further development of the theory including the presentation of the research results gained by Jiří Čermák in this area. The third part describes own solution of the difference equations system via eigenvectors based on the principle of Weyr's method for differential equations. The solution of system of linear homogeneous difference equtions with constant coefficients including the proof is presented and this solution is then extended to nonhomogeneous systems. Consequently to the theory, the influence of a nulity and the multiplicity of roots on the form of the solution is discussed. The last section of this part shows the implementation of the algorithm in Matlab program (for basic simpler cases) and its application to some cases of difference equations and systems with these equations. The final part of the thesis is more practical and it presents the usage of the designed algorithm and theory. Firstly, the algorithm is compared with Z-transform and the method of variation of constants and it is illustrated how to obtain the same results by using these three approaches. Then an example of current response solution in RLC circuit is demonstrated. The continuous case is solved and then the problem is transferred to discrete case and solved with the Z-transform and the method of eigenvectors. The obtained results are compared with the result of the continuous case.

See also: similar author names
7 Diblík, Jan
2 Diblík, Jaroslav
Interested in being notified about new results for this query?
Subscribe to the RSS feed.