Název: Comparative Analysis of Gaussian Process Regression Modeling of an Induction Machine: Continuous vs. Mixed-Input Approaches
Autoři: Bílek, Vladimír
Typ dokumentu: Příspěvky z konference
Jazyk: eng
Nakladatel: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstrakt: This paper investigates the application of machine learning technique for modeling continuous and mixed-input parameters of electrical machines. The design of electrical machines typically requires the consideration of certain parameters as integer values due to their physical significance, including the number of stator/rotor slots, stator wires, and rotor bars. Traditional machine learning methods, which predominantly treat input parameters as purely continuous, may compromise modeling accuracy for such applications. To address this challenge, models capable of handling mixed-input parameters were used for the case study. Two training datasets were generated: one with purely continuous inputs and another with both continuous inputs and a categorical parameter, specifically, the number of stator conductors. Gaussian process regression was employed to build three models: two with continuous kernels, trained on both datasets, and one with a mixed kernel, trained only on the dataset containing a categorical parameter. A comparative analysis, demonstrated on a 1.5 kW induction machine - though applicable to a wide range of machines - illustrates the differences between the proposed approaches. The results highlight the importance of selecting an appropriate model for the Multi- Objective Bayesian optimization of electrical machines.
Klíčová slova: Finite element method; Gaussian process regression; Induction machine; Machine learning; Mixed-Input surrogate models; Surrogate modeling
Zdrojový dokument: Proceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers, ISBN 978-80-214-6230-4, ISSN 2788-1334

Instituce: Vysoké učení technické v Brně (web)
Informace o dostupnosti dokumentu: Plný text je dostupný v Digitální knihovně VUT.
Původní záznam: https://hdl.handle.net/11012/249321

Trvalý odkaz NUŠL: http://www.nusl.cz/ntk/nusl-622615

 Záznam vytvořen dne 2024-07-21, naposledy upraven 2024-07-21.


Není přiložen dokument
  • Exportovat ve formátu DC, NUŠL, RIS
  • Sdílet