National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Oxidative Post-translational Modifications and Their Importance
Šimková, Anna ; Míšek, Jiří (advisor) ; Petrák, Jiří (referee)
Aerobic life brings the inevitable exposure of living systems to reactive oxygen, nitrogen and chlorine species. A wide variety of oxidants can alter the structure of biomolecules such as proteins, lipids and DNA. Oxidative post-translational midifications play an important role in a number of cellular processes, for example, they are involved in redox signaling, gene transcription and metabolism. The increase of oxidants in cells leads to oxidative stress, which is associated with the development of neurodegenerative, cardiovascular and autoimmune diseases in humans. Considering reactive species as specific molecular agents can shed light on the complexity of the connection between redox processes and develop the emerging field of redox medicine.
Expression, characterisation and biological role of Ddi II, putative protein partner of proteasomal complex
Sivá, Monika ; Konvalinka, Jan (advisor) ; Obšil, Tomáš (referee)
Cell homeostasis is maintained via strictly regulated processes. One of the important regulation systems is ubiquitin-proteasome proteolytic pathway. Proteins to be degraded are posttranslationally modified with polyubiquitin chains and targeted to the proteasome for degradation. Ubiquitin-proteasome system consists of several processes: ubiquitination of target substrates via set of enzymes, substrate transfer and degradation in the 26S proteasome. There are two ways of ubiquitinated substrate recognition via proteasome. It is either directly by proteasomal receptors or by protein shuttles. Shuttling factors bind polyubiquitinated target substrate and transfer it to the entrance of proteasomal cavity thanks to their typical domain architecture. The N-terminal ubiquitin-like domain binds to regulatory particle of the proteasome and the C-terminal ubiquitin-associated domain binds polyubiqitinated chains on substrates. This thesis focuses on the human DNA damage-inducible protein homolog 2 (Ddi2), a potential member of protein shuttles of humans, and on the interaction of its ubiquitin-like domain with its putative interaction partner, a proteasomal subunit PSMD2. PSMD2 has been cloned, expressed and purified in sufficient yields for further experiments. "Cold" as well as isotopically labeled UBL domain of...
Expression, characterisation and biological role of Ddi II, putative protein partner of proteasomal complex
Sivá, Monika ; Konvalinka, Jan (advisor) ; Obšil, Tomáš (referee)
Cell homeostasis is maintained via strictly regulated processes. One of the important regulation systems is ubiquitin-proteasome proteolytic pathway. Proteins to be degraded are posttranslationally modified with polyubiquitin chains and targeted to the proteasome for degradation. Ubiquitin-proteasome system consists of several processes: ubiquitination of target substrates via set of enzymes, substrate transfer and degradation in the 26S proteasome. There are two ways of ubiquitinated substrate recognition via proteasome. It is either directly by proteasomal receptors or by protein shuttles. Shuttling factors bind polyubiquitinated target substrate and transfer it to the entrance of proteasomal cavity thanks to their typical domain architecture. The N-terminal ubiquitin-like domain binds to regulatory particle of the proteasome and the C-terminal ubiquitin-associated domain binds polyubiqitinated chains on substrates. This thesis focuses on the human DNA damage-inducible protein homolog 2 (Ddi2), a potential member of protein shuttles of humans, and on the interaction of its ubiquitin-like domain with its putative interaction partner, a proteasomal subunit PSMD2. PSMD2 has been cloned, expressed and purified in sufficient yields for further experiments. "Cold" as well as isotopically labeled UBL domain of...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.