National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Cellular and molecular mechanisms of activation of thermally sensitive TRP ion channels
Máčiková, Lucie ; Vlachová, Viktorie (advisor) ; Anděrová, Miroslava (referee) ; Jakubík, Jan (referee)
The transient receptor potential (TRP) are cation channels mostly permeable to both monovalent and divalent cations. ThermoTRP is a specific group of directly thermally activated TRP channels. The vanilloid transient receptor potential 3 (TRPV3) is an ion channel widely expressed in keratinocytes, that is implicated in the regulation of skin homeostasis, thermo- sensing, nociception and development of itch sensation. Our results show the importance of the cytoplasmic inter-subunit interface in the heat sensitivity of TRPV3. As there is a structural analogy within the vanilloid receptors, our hypothesis of the identified important region is supposed to be valid also for other thermally activated TRPV receptors (TRPV1, TRPV2 and TRPV4). We have proved that TRPV3 is a substrate for ERK1/2 protein kinase (kinase regulated by extracellular signal 1 and 2) and we have identified TRPV3 phosphorylation sites that may be direct targets for ERK1/2. Of these residues, threonine 264 has been shown to be the main phosphorylation site responsible for TRPV3 sensitization mediated by ERK kinase. In human keratinocytes, the phosphorylation might be physiologically and pathophysiologically important in processes of TRPV3 sensitization mediated by MAPK signaling pathway. The transient receptor potential ankyrin 1...
Functional role of cytoplasmic domains in the gating of TRPA1 channel
Vašková, Jana ; Vlachová, Viktorie (advisor) ; Zemková, Hana (referee)
The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in a subset of primary afferent neurones where it is activated by a variety of pungent and chemically reactive compounds such as allyl isothiocyanate or cinnamaldehyde. This voltage- dependent channel is activated through covalent modification of cytoplasmic cysteines and, from the cytoplasmic side, is also critically regulated by calcium ions. Both, amino (N-) and carboxyl (C-) termini have been shown to be involved in these processes. Using electrophysiological and molecular-biology techniques, we explored the role of specific cytoplasmic domains in the activation of TRPA1. By measuring chemically-, voltage-, and calcium-activated membrane TRPA1-mediated currents, we identified highly conserved serine and threonine residues along the N-terminal ankyrin repeat domain, mutation of which strongly affected responses of the channel. In addition, using C-terminally truncated construct previously reported to be involved in calcium regulation, we present a new finding that the distal C-terminal tail contributes to voltage-dependent activation of TRPA1.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.