National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Study of etiopathology of mitochondrial disorders
Rákosníková, Tereza ; Tesařová, Markéta (advisor) ; Pecina, Petr (referee) ; Kalous, Martin (referee)
Mitochondrial disorders are a clinically, biochemically and genetically heterogeneous group of inherited disorders with a prevalence of about 1:5 000 live births. A common sign of those disorders is disruption of mitochondrial energetic metabolism. To this day, more than 400 genes have been associated with mitochondrial disorders, but 45% of patients are still without a genetic diagnosis. Using next-generation sequencing, new candidate genes or variants are found. To confirm the causality of those newly found genes or variants, biochemical characterisation using a plethora of various methods is necessary. The first aim of this thesis was to study the function of ACBD3 protein on mitochondrial energetic metabolism in non-steroidogenic cells HEK293 and HeLa and to confirm the causality of the ACBD3 gene in a patient with combined oxidative phosphorylation (OXPHOS) deficit. The second aim was to confirm the causality of two novel variants in MT-ND1 and MT-ND5 genes, which encode structural subunits of complex I (CI) of the respiratory chain. The third aim of the thesis was to study the formation of supercomplexes (SCs) in patients with rare metabolic diseases. Using functional studies, we showed in this thesis that ACBD3 protein has no essential function in mitochondria but plays an important role in...
Supercomplexes in the respiratory chain of mitochondria
Mikulová, Tereza ; Houštěk, Josef (advisor) ; Holzerová, Kristýna (referee)
Mitochondria are very important organelles of eukaryotic cell. In mitochondria, there are located many metabolic reactions including oxidative phosphorylation (OXPHOS). In this process, respiratory chain enzyme complexes couple the oxidation of NADH and FADH2 to vectorial proton transport across the inner mitochondrial membrane. ATP synthase then uses the resulting electrochemical potential to synthesize ATP from ADP and phosphate. Recent studies of the OXPHOS demonstrate higher structures of complexes so-called supercomplexes which facilitate substrate channeling. Formation of supercomplexes plays a role in the assembly and stability of the complexes, suggesting that the supercomplexes are the functional state of the respiratory chain.
Molecular mechanism of reactive oxygen species production by flavin dehydrogenases of mitochondrial respiratory chain.
Holzerová, Eliška ; Mráček, Tomáš (advisor) ; Kalous, Martin (referee)
The aim of this thesis is to investigate molecular mechanism of reactive oxygen species production by flavin dehydrogenases mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH). Together, they represent important source of reactive oxygen species in mammalian mitochondria, but the mechanism of electron leak is still poorly understood. Because mechanisms of reactive oxygen species production by other complexes of respiratory chain are better characterized, they can serve as case studies to get insight into mechanisms of reactive oxygen species by flavin dehydrogenases. Relevant knowledge is therefore summarized in the first part of the thesis. To study the production of reactive oxygen species by the isolated flavin dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements, hydrogen peroxide production studies by Amplex UltraRed fluorescence and luminol luminescence revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q binding site as the site of reactive oxygen species production in the case of mGPDH. Distinct mechanism of this production by the two dehydrogenases is also apparent from induction of reactive oxygen species...
The content of components of ATP synthasome in different rat tissues and in patients with defects in ATP synthase
Mikulová, Tereza ; Houštěk, Josef (advisor) ; Kalous, Martin (referee)
The complexes of oxidative phosphorylation (OXPHOS) are situated in the inner mitochondrial membrane in higher structural and functional complexes, so-called supercomplexes, which facilitates substrate channeling. ATP synthase is also able to organize in higher structures. In mammalian mitochondria, ATP synthase is usually present in a dimeric form. There is evidence of its trimerization and even tetramerization. Furthermore, it seems that ATP synthase catalyzing the phosphorylation of ADP to ATP, adenine nucleotide translocator (ANT) ensuring the exchange of ADP for newly synthesized ATP across the inner mitochondrial membrane and phosphate carrier (PiC) allowing the import of inorganic phosphate (Pi) into the matrix of mitochondria are assembled in a supercomplex called ATP synthasome. This association among the components of phosphorylative apparatus seems to increase the efficiency of processes leading to the ATP synthesis. First, we studied amounts of the components of phosphorylative apparatus in connection with various ATP synthase contents among mitochondria isolated from nine rat tissues. Mitochondrial proteins were separated by denaturing electrophoresis (SDS-PAGE) and their content was analyzed using specific antibodies. In agreement with our expectations, the highest content of...
Molecular mechanism of reactive oxygen species production by flavin dehydrogenases of mitochondrial respiratory chain.
Holzerová, Eliška ; Mráček, Tomáš (advisor) ; Kalous, Martin (referee)
The aim of this thesis is to investigate molecular mechanism of reactive oxygen species production by flavin dehydrogenases mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH). Together, they represent important source of reactive oxygen species in mammalian mitochondria, but the mechanism of electron leak is still poorly understood. Because mechanisms of reactive oxygen species production by other complexes of respiratory chain are better characterized, they can serve as case studies to get insight into mechanisms of reactive oxygen species by flavin dehydrogenases. Relevant knowledge is therefore summarized in the first part of the thesis. To study the production of reactive oxygen species by the isolated flavin dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements, hydrogen peroxide production studies by Amplex UltraRed fluorescence and luminol luminescence revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q binding site as the site of reactive oxygen species production in the case of mGPDH. Distinct mechanism of this production by the two dehydrogenases is also apparent from induction of reactive oxygen species...
The content of components of ATP synthasome in different rat tissues and in patients with defects in ATP synthase
Mikulová, Tereza ; Houštěk, Josef (advisor) ; Kalous, Martin (referee)
The complexes of oxidative phosphorylation (OXPHOS) are situated in the inner mitochondrial membrane in higher structural and functional complexes, so-called supercomplexes, which facilitates substrate channeling. ATP synthase is also able to organize in higher structures. In mammalian mitochondria, ATP synthase is usually present in a dimeric form. There is evidence of its trimerization and even tetramerization. Furthermore, it seems that ATP synthase catalyzing the phosphorylation of ADP to ATP, adenine nucleotide translocator (ANT) ensuring the exchange of ADP for newly synthesized ATP across the inner mitochondrial membrane and phosphate carrier (PiC) allowing the import of inorganic phosphate (Pi) into the matrix of mitochondria are assembled in a supercomplex called ATP synthasome. This association among the components of phosphorylative apparatus seems to increase the efficiency of processes leading to the ATP synthesis. First, we studied amounts of the components of phosphorylative apparatus in connection with various ATP synthase contents among mitochondria isolated from nine rat tissues. Mitochondrial proteins were separated by denaturing electrophoresis (SDS-PAGE) and their content was analyzed using specific antibodies. In agreement with our expectations, the highest content of...
Supercomplexes in the respiratory chain of mitochondria
Mikulová, Tereza ; Holzerová, Kristýna (referee) ; Houštěk, Josef (advisor)
Mitochondria are very important organelles of eukaryotic cell. In mitochondria, there are located many metabolic reactions including oxidative phosphorylation (OXPHOS). In this process, respiratory chain enzyme complexes couple the oxidation of NADH and FADH2 to vectorial proton transport across the inner mitochondrial membrane. ATP synthase then uses the resulting electrochemical potential to synthesize ATP from ADP and phosphate. Recent studies of the OXPHOS demonstrate higher structures of complexes so-called supercomplexes which facilitate substrate channeling. Formation of supercomplexes plays a role in the assembly and stability of the complexes, suggesting that the supercomplexes are the functional state of the respiratory chain.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.