National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Design Kalina cycle for geothermal power plant and its turbine.
Luermann, Július ; Martinec, Jiří (referee) ; Škorpík, Jiří (advisor)
This master’s thesis analyses Kalina cycle, a power cycle where ammonia – water solution is used as a working fluid. The first part of this study introduces us to the Kalina cycle, presents its advantages and disadvantages, characteristics of the working fluid and its applications. Second section concerns with the method of cycle design and describes the calculation model made in this thesis. The calculation model is attached in a separate .XLSM file. The third part shows calculation of the cycle for given parameters, determination of cycle efficiency and main proportions of the thermal turbine. In the conclusion are the interpretations of the calculations results.
Uehara cycle
Soška, Michal ; Škorpík, Jiří (referee) ; Fiedler, Jan (advisor)
This Diploma thesis describes design of the computational model of Uehara power cycle, with ammonia-water mixture used as working fluid. First part is dedicated to issue of determination working mixture thermodynamic properties, which are essential for computational model design. The second part of this thesis describes the methodology of computing power cycle by system matrix solving method. For purposes of methodology testing, model of Kalina power cycle was also created. Computational models of Uehara and Kalina cycles are designed in Excel and are an integral part of this thesis. Text part also includes a description of their user interface, calculation algorithm and detailed description of the design methodology.
COMPARISON OF S-CO2 POWER CYCLES FOR NUCLEAR ENERGY
Veselý, L. ; Dostál, V. ; Entler, Slavomír
The supercritical carbon dioxide (S-CO2) is a possible cooling system for the new generations of nuclear reactors and fusion reactors. The S-CO2 power cycles have several advantages over other possible coolants such as water and helium. The advantages are the compression work, which is lower than in the case of helium, near the critical point and the S-CO2 is more compact than water and helium. The disadvantage is so called Pinch point which occurs in the regenerative heat exchanger. The pinch point can be eliminated by an arrangement of the cycle or using a mixture of CO2. This paper describes the S-CO2 power cycles for nuclear fission and fusion reactors.
Uehara cycle
Soška, Michal ; Škorpík, Jiří (referee) ; Fiedler, Jan (advisor)
This Diploma thesis describes design of the computational model of Uehara power cycle, with ammonia-water mixture used as working fluid. First part is dedicated to issue of determination working mixture thermodynamic properties, which are essential for computational model design. The second part of this thesis describes the methodology of computing power cycle by system matrix solving method. For purposes of methodology testing, model of Kalina power cycle was also created. Computational models of Uehara and Kalina cycles are designed in Excel and are an integral part of this thesis. Text part also includes a description of their user interface, calculation algorithm and detailed description of the design methodology.
Design Kalina cycle for geothermal power plant and its turbine.
Luermann, Július ; Martinec, Jiří (referee) ; Škorpík, Jiří (advisor)
This master’s thesis analyses Kalina cycle, a power cycle where ammonia – water solution is used as a working fluid. The first part of this study introduces us to the Kalina cycle, presents its advantages and disadvantages, characteristics of the working fluid and its applications. Second section concerns with the method of cycle design and describes the calculation model made in this thesis. The calculation model is attached in a separate .XLSM file. The third part shows calculation of the cycle for given parameters, determination of cycle efficiency and main proportions of the thermal turbine. In the conclusion are the interpretations of the calculations results.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.