National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
The influence of internal thermal storage mass used in passive houses' construction systems on their summer thermal stability
Němeček, Martin ; Hraška,, Jozef (referee) ; Katunský,, Dušan (referee) ; Kalousek, Miloš (advisor)
In recent years we may observe a growth in construction of passive houses and low energy houses using lightweight constructions such as modern wooden houses. It is assumed that wooden houses keep overheating more comparing to brick houses during summer period. Due to the lack of research in this field the paper investigates the influence of internal thermal storage mass in passive houses constructions on their summer thermal stability under the Czech climatic conditions. Only sensible heat accumulation without a usage of phase change materials is examined. Differences between wooden houses comparing to brick-built houses are emphasized. Objects of research are mostly residential passive houses in low energy building standards. However, the results of research might be applied to different types of buildings as well. The first section outlines theoretical fundamentals. For the research itself various scientific research methods were used, such as basic mathematical calculations, experimental temperature measurement of two buildings (detached house in Dubňany and in Moravany) and numerical simulations. Own tribute to the research was first of all discussion on the topic of thermal accumulation and structures heat capacity calculation. Experimental measurements outlined conclusive evidence about the importance of internal thermal storage mass in respect of interior summer overheating. The research confirmed that the highest interior temperature reached is mostly influenced by solar gains through unshaded windows. However, the influence of internal thermal storage mass is not remote. If we compare standard timber-framed wooden house to the hole ceramic bricks-built house, the wooden house will overheat by 0,5°C more during a standard day. Wider spread in the maximum temperature reached was measured for lightweight consturctions wooden houses without any internal thermal storage mass. Therefore, such structures should have an additional layer of thermal storage mass.
Heat-moisture and Heat Storage Properties of Heavy Structures of Sloping Roofs
Pilný, Ondřej ; Ostrý, Milan (referee) ; Novotný,, Marek (referee) ; Kalousek, Lubor (advisor)
The heavy claddings of sloping roofs are increasingly being incorporated into the common constructions of family houses, apartment buildings and other civic amenities. Thanks to the increasing demands for energy savings in the form of ever-tightening values of heat transfer coefficients and other thermal engineering requirements, these designs are the answer to how to achieve the requirements more easily. Furthermore, they are able to influence the passive thermal stability of interiors and thus solve not only the issue of overheating of buildings, but also to achieve energy savings in the case of thermal stabilization of the interior throughout the year. However, if there is a lack of understanding of these different constructions for heat-moisture and heat storage behaviour, there is a risk of the opposite effect and a risk of deterioration of interior thermal stability. Therefore, it is necessary to better understand these structures in terms of behaviour and the impact that their use has on the building itself. Also, it is desirable to understand the effect of changes in their partial material properties and of the composition itself on the functioning of heat-moisture and heat storage properties of compositions that use these materials.
The influence of internal thermal storage mass used in passive houses' construction systems on their summer thermal stability
Němeček, Martin ; Hraška,, Jozef (referee) ; Katunský,, Dušan (referee) ; Kalousek, Miloš (advisor)
In recent years we may observe a growth in construction of passive houses and low energy houses using lightweight constructions such as modern wooden houses. It is assumed that wooden houses keep overheating more comparing to brick houses during summer period. Due to the lack of research in this field the paper investigates the influence of internal thermal storage mass in passive houses constructions on their summer thermal stability under the Czech climatic conditions. Only sensible heat accumulation without a usage of phase change materials is examined. Differences between wooden houses comparing to brick-built houses are emphasized. Objects of research are mostly residential passive houses in low energy building standards. However, the results of research might be applied to different types of buildings as well. The first section outlines theoretical fundamentals. For the research itself various scientific research methods were used, such as basic mathematical calculations, experimental temperature measurement of two buildings (detached house in Dubňany and in Moravany) and numerical simulations. Own tribute to the research was first of all discussion on the topic of thermal accumulation and structures heat capacity calculation. Experimental measurements outlined conclusive evidence about the importance of internal thermal storage mass in respect of interior summer overheating. The research confirmed that the highest interior temperature reached is mostly influenced by solar gains through unshaded windows. However, the influence of internal thermal storage mass is not remote. If we compare standard timber-framed wooden house to the hole ceramic bricks-built house, the wooden house will overheat by 0,5°C more during a standard day. Wider spread in the maximum temperature reached was measured for lightweight consturctions wooden houses without any internal thermal storage mass. Therefore, such structures should have an additional layer of thermal storage mass.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.