National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Cold perception and cold receptors
Kužílková, Johana Abigail ; Žurmanová, Jitka (advisor) ; Ptáková, Alexandra (referee)
Cold perception is a crucial sensory phenomenon for the survival of most organisms. It facilitates the selection of appropriate thermoregulatory responses necessary for maintaining organismal integrity and aids in spatial orientation. However, the mechanisms underlying cold perception remain incompletely understood. Central to this process are cold receptors, proteins capable of depolarizing cells and eliciting action potentials in response to cold stimuli. This study aims to review and understand the current literature on two key aspects related to cold perception. Firstly, it seeks to elucidate how contemporary knowledge explains an organism's ability to discern a wide range of cold temperatures. Secondly, it endeavours to explore the identified or hypothesized cold receptors and the extent of our knowledge regarding their functional role in the perception of cold. Key words: Cold perception, cold activated receptors, TRPM8, TRPA1, TRPC5
Molecular mechanisms of polymodal regulation of TRPA1 receptor
Sinica, Viktor ; Vlachová, Viktorie (advisor) ; Vondrášek, Jiří (referee) ; Holendová, Blanka (referee)
The TRPA1 channel is a universal, nociception-mediating cellular sensor activated by various environmental irritants, potentially harmful physical modalities and endogenous mediators of pathophysiological processes. The polymodality of TRPA1 channel allows the activation stimuli to further enhance or suppress each other's effect. While this modulation effect has its physiological importance in promoting the protective cellular and behavioral mechanisms, it may result into the unpleasant pain-related effects accompanying the chronical pain caused by aberrant TRPA1 channel activity. In order to effectively and selectively target the synergic properties of TRPA1 modulators, while preserving the sensitivity to the environmental threads, the knowledge of the mechanisms of polymodal regulation at the molecular level are required. This doctoral thesis aims at the elucidation of three main mechanisms of TRPA1 regulation: 1) the regulation via intracellular signaling cascades and phosphorylation, 2) the interaction with membrane phospholipids and 3) the temperature-driven gating. The results presented in the thesis show that the effects of the inflammatory mediator bradykinin are decreased by the low-frequency high-induction electromagnetic field used in magnetotherapy. We have identified a residue S602...
Mechanisms of Activation and Modulation of Ion Channels Specific for Nociceptive Neurones
Touška, Filip ; Vlachová, Viktorie (advisor) ; Paleček, Jiří (referee) ; Tureček, Rostislav (referee)
Human body detects potentially damaging stimuli by specialized sensory nerve endings in the skin, the nociceptors. Their membranes are equipped with ion channels, molecular sensors, coding the outside stimuli into the trains of action potentials and conducting them to the higher brain centers. The most prominent group of transduction ion channels is the transient receptor potential (TRP) channel family followed by ion channels responsible for generation and conduction of action potentials from the periphery to the brain, the voltage-gated sodium channels (VGSCs). Understanding the mechanisms how particular stimulus is encoded and processed is of particular importance to find therapeutics for various types of pain conditions. We characterized the properties of VGSC subtypes NaV1.9 and NaV1.8 at high temperatures. We showed that NaV1.9 undergo large increase in current with increasing temperatures and significantly contribute to the action potential generation in dorsal root ganglion (DRG) neurons. Ciguatoxins (CTXs) are sodium channels activator toxins causing ciguatera fish poisoning, a disease manifested by sensory and neurological disturbances. We elucidated the mechanism of CTX- induced cold allodynia, a pathological phenomenon where normally innocuous cool temperatures are perceived as pain. We...
Structural and Functional Study on Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin Receptor (TRPA1) Channels
SAMAD, Abdul
Investigations of structural and functional relationships of rat transient receptor potential cation channel, subfamily V, member 1 (TRPV1), also known as the capsaicin receptor, and human transient receptor potential cation channel, subfamily A, member 1, also known as TRPA1, are presented. Capsaicin induced Ca2+ -dependent desensitization of rat TRPV1 channel is studied and lead to the identification of key amino acid residues in the C- terminal domain of TRPV1 interacting with the membrane phospholipid PIP2 and an intradomain interaction that controls the open and desensitized state of the TRPV1 channel. Further the molecular basis of agonist AITC- and voltage-dependent gating on TRPA1 is explained. Hereby, residue P949 located near the center of the sixth transmembrane spanning helix (S6) is structurally required for normal functioning of the receptor and the distal bi-glycine G958XXXG962 motif controls its activation/deactivation properties. Furthermore, the gating region is extended towards the cytoplasmic part of the channel, putatively located near the inner mouth of the channel pore. A following series of experiments lead to the identification of a limited number of residues that appear important for allosteric regulation of the channel by chemical and voltage stimuli (K969, R975, K989, K1009, K1046, K1071, K1092 and K1099). In addition, three charge-neutralizing `gain-of- function{\crq} mutants (R975A, K988A, and K989A) which exhibited higher sensitivity to depolarizing voltages were characterized, indicating that these residues are directly involved in voltage-dependent modulation of TRPA1.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.