National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Determination of absolute quantum yield of luminescence
Smísitel, Petr ; Valenta, Jan (advisor) ; Herynková, Kateřina (referee)
In this bachelor thesis we will study the determination of absolute quantum yields (efficiency) of photoluminiscence, which is equal to the ratio of number of emitted photons and number of absorbed photons. The common approach is to compare the absorption and luminescence spectrum. The main experimental problem is to eliminate the influence of angular dependence of reflection, emission and scattering. Therefore it is convenient to use the integrating sphere which eliminate most of the problems of relative measurements of quantum yield. In detail we will describe the method to determine the quantum yields of luminescence using the integrating sphere including the description of the experimental equipment and the procedure of processing data and estimation of uncertainty. Finally, we apply the procedure to solid and liquid samples containing silicon nanocrystals. We will measure the dependence of quantum yields on the applied excitation wavelength. 1
Nanoscopy, spectroscopy and modication of individual nanoobjects in liquid environment
Smísitel, Petr ; Valenta, Jan (advisor) ; Galář, Pavel (referee)
In this diploma thesis we will study the luminescence properties of nanocrystals. We will summarize the basic division according to size and standard method of theoretical description of semiconductor and metal nanocrystals. We will describe the luminescence properties of nanocrystals and the influence of the surrounding environment. In the se- cond part of the thesis we will follow up the construction of an apparatus for imaging luminescence spectroscopy intended for the measurement of individual nanoobjects in a liquid environment. Finally, we will study luminescence properties of organixally passi- vated metal clusters in a liquid environment with changes in temperature and excitation intensity. We compare the luminescence of gold nanocrystals with and without long po- lyethylene glycol chains bound on the surface. 1
Nanoscopy, spectroscopy and modication of individual nanoobjects in liquid environment
Smísitel, Petr ; Valenta, Jan (advisor) ; Galář, Pavel (referee)
In this diploma thesis we will study the luminescence properties of nanocrystals. We will summarize the basic division according to size and standard method of theoretical description of semiconductor and metal nanocrystals. We will describe the luminescence properties of nanocrystals and the influence of the surrounding environment. In the se- cond part of the thesis we will follow up the construction of an apparatus for imaging luminescence spectroscopy intended for the measurement of individual nanoobjects in a liquid environment. Finally, we will study luminescence properties of organixally passi- vated metal clusters in a liquid environment with changes in temperature and excitation intensity. We compare the luminescence of gold nanocrystals with and without long po- lyethylene glycol chains bound on the surface. 1
Determination of absolute quantum yield of luminescence
Smísitel, Petr ; Valenta, Jan (advisor) ; Herynková, Kateřina (referee)
In this bachelor thesis we will study the determination of absolute quantum yields (efficiency) of photoluminiscence, which is equal to the ratio of number of emitted photons and number of absorbed photons. The common approach is to compare the absorption and luminescence spectrum. The main experimental problem is to eliminate the influence of angular dependence of reflection, emission and scattering. Therefore it is convenient to use the integrating sphere which eliminate most of the problems of relative measurements of quantum yield. In detail we will describe the method to determine the quantum yields of luminescence using the integrating sphere including the description of the experimental equipment and the procedure of processing data and estimation of uncertainty. Finally, we apply the procedure to solid and liquid samples containing silicon nanocrystals. We will measure the dependence of quantum yields on the applied excitation wavelength. 1

Interested in being notified about new results for this query?
Subscribe to the RSS feed.