National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Cell growth on biomaterials for skin replacements and wound dressings
Kudláčková, Radmila ; Bačáková, Lucie (advisor) ; Rösel, Daniel (referee) ; Eckhardt, Adam (referee)
Tissue engineering is an emerging interdisciplinary field developing new ways of treatment of patient's tissue defects using artificial substitutes. Skin tissue engineering is developing skin substitutes and wound dressings that would replace current treatment using autologous, allogeneic or xenogenic substitutes. There are high demands on materials which should serve as a scaffolds for dermal fibroblasts and keratinocytes. They must be non-cytotoxic and biodegradable with a rate proportional to formation of a new tissue. The materials should support adhesion and proliferation of the cells and even they could release growth factors and antimicrobial substance to enhance healing and new tissue formation. In this master thesis, the cell adhesion and proliferation were evaluated on sodium carboxymethyl cellulose (Hcel® NaT), poly-ε-caprolactone (PCL), poly-L-lactide-co-ε-caprolactone (PLA/PCL) and cellulose acetate (AC) nanofiber membranes. Primary human dermal fibroblasts and HaCaT cell line keratinocytes were selected for evaluation. The cell adhesion was observed by fluorescent microscopy, the proliferation was determined by metabolic assay (WST-1) and the material cytotoxicity was evaluated in xCELLigence® system. Materials did not show cytotoxic effects on the cells. However, the materials did...
Role of Polo-like kinases in the cell cycle and DNA damage response
Kudláčková, Radmila ; Macůrek, Libor (advisor) ; Šolc, Petr (referee)
Within the process of cell division, genetic material must be equally distributed between the two daughter cells. In the next phase, the missing portion of the genome must be synthesized. The entire cycle is regulated by cyclin-dependent kinases (Cdks) in cooperation with cyclins. If the DNA is damaged during the cell cycle, signaling pathways of checkpoints supress cycle progression and enforce the cell cycle arrest until the damage is repaired. Malfunction of the checkpoints results in tumorigenesis. Polo-like kinases (Plks) are, much like Cdks, important regulators of the cell cycle. Plks play significant role mainly in the mitosis and also in a response to the DNA damage. This thesis is focused on human homologues, nevertheless conservation of homologues among organisms is considerable, thus presented findings are of general relevance. Human cells express five proteins from the family of Polo-like kinases, from which Plk1 corresponds to Polo-like kinases of lower eukaryotes. Knowledge on the remaining four kinases is still on the rise.

See also: similar author names
2 Kudláčková, Romana
Interested in being notified about new results for this query?
Subscribe to the RSS feed.