National Repository of Grey Literature 25 records found  previous11 - 20next  jump to record: Search took 0.01 seconds. 
Preparation and Characterization of Mixed Hydrogels Based on the System Hyaluronan-Albumin
Hájovská, Pavla ; Kráčalík, Milan (referee) ; Kalina, Michal (advisor)
This diploma thesis deals with preparation and subsequent characterization of albumin (BSA) and mixed hyaluronan-albumin (HA+BSA) hydrogels. The experimental characterization was based on the rheological measurements of the influence of ionic strength, pH and molar mass of HA on the gelation process and the properties of formed gels, as well as the time stability of these properties. Following object of the study was swelling of hydrogels in water and buffers with different pH value. Characterization was extended by thermal analysis, morphology description using scanning electron microscopy (SEM) and study of transport properties of hydrogels for selected model substance. Due to increasing ionic strength, the gel point was shifted towards higher temperature values and the resulting gels exhibited higher values of complex moduli. In case when pH was lower than isoelectric point of BSA, attractive electrostatic interactions between albumin and hyaluronan took place and the faster gelation occurred, compared to the case when pH was higher than isoelectric point of BSA. On the contrary, values of complex moduli increased with increasing pH. The gel samples prepared in the presence of low molecular weight HA reached higher values of complex moduli, compared to samples with the high molecular weight HA. Rheological properties of BSA gels were stable over time, whereas the mixed HA+BSA were characterized by significant decrease of complex moduli during the first three days of storage. Due to heating up to 100 °C, more than 80 % of the weight of studied samples was lost, as a result of water evaporation. Further heating of hydrogels, up to 250 °C, did not cause other changes associated with weight loss, in contrast with crystalline powder BSA, in which another weight loss at 220 °C was observed, as a result of the beginning degradation. Swelling studies, as well as SEM images, indicated higher crosslink density of BSA gels, compared to HA+BSA samples, which exhibited higher values of swelling ratio. The lowest values of equilibrium swelling ratio were observed at pH 4, which is close to the isoelectric point of albumin. Calculated diffusion coefficients relative to diffusivity of methylene blue in water ranged between the order of 10E-2 for diffusion into physiological solution and the order of 10E-3 for the diffusion into water. Ongoing transport of model dye from gel to solution was significantly slower, compared to its diffusion in water, as a result of gel porosity and electrostatic immobilization of positively charged molecules of methylene blue on the negatively charged BSA and HA chains.
Targeted modification of transport and structural properties of biomedical hydrogels
Bayerová, Zuzana ; Kráčalík, Milan (referee) ; Smilek, Jiří (advisor)
The presented diploma thesis deals with a targeted modification of the structural properties of hydrogels, which is closely related to the application properties of these materials (eg transport). Due to the desired pharmacological applications of the use of these materials for targeted drug release, hydrogels based on chitosan and polyvinyl alcohol as substances with good biocompatibility were selected for the study. The combination of these polymers ensured swelling (controlled by the presence of chitosan) and viscoelastic (influenced by the presence of polyvinyl alcohol) properties, which were characterized by a wide range of analytical and physicochemical methods (swelling, tensile strength, rheology, atomic force microscopy or specific surface area, etc.). Information on structural properties played a crucial role not only for a detailed description of the studied materials in terms of whether the structural properties can be changed in a targeted manner, but also served as an explanation for the different release of the active substance diclofenac from the hydrogel matrix. With regard to the literature search, the effect of pH and crosslinking was chosen to modify the properties. From the measured results it was found that even a slight change in pH has an effect on the transport or release of the active substance. The results obtained in this work may be useful in the formation of hydrogel matrices with drugs depending on the intended medical applications.
Physical hydrogels based on biopolymers and surfactants
Velcer, Tomáš ; Lehocký, Marián (referee) ; Kráčalík, Milan (referee) ; Pekař, Miloslav (advisor)
This doctoral thesis studies the properties and behaviour of phase-separated hydrogels. These can be prepared by interaction of polyelectrolytes with oppositely charged surfactants. Negatively charged polysaccharide hyaluronan and cationic surfactant carbethopendecinium bromide (Septonex), whose properties, behaviour and utilization are described in the first two chapters of theoretical part, were selected for this role. Hyaluronan is naturally-occuring in living organisms and is known for his specific targeting to the tumour cells. Septonex is used as antiseptic and disinfectant. Experimental part of this work is focused on examination of the structure and behaviour of these types of hydrogels especially from rheological point of view. The crucial part of this study was to establish mechanical properties and their dependence on environment. This led to design further studies. Structural analysis was held using the methods of ATR-FTIR, ionic chromatography and ICP-OES helping to measure the inner content of entry materials in the gels and supernatants respectively. The last chapter deals with antimicrobial activity. The results of this study indicate a potential usage of these substances in the field of medical applications.
Development of New Application Forms of Humic Substances for Agricultural and Environmental application
Kratochvílová, Romana ; Kráčalík, Milan (referee) ; Salaš, Petr (referee) ; Klučáková, Martina (advisor)
The new forms of superabsorbent polymers (SAP) on the base of acrylic acid were developed and studied in this thesis. The SAP are focused on agricultural and environmental applications. While they are applied to the soil, SAP can prevent water losing and they become a reservoir of humidity in case of dry season, moreover in combination with fertiliser they play role of controlled release medium. Eight various samples of SAP were experimentally prepared by networking of partially neutralized acrylic acid. Potassium peroxydisulfate was used as the initiator and N,N–methylenebisacrylamide as the crossing agent. Some of samples contained addition of second monomer of acrylamide. All of them were enriched by fertilisers – natural lignohumate or synthetic NPK or combination of both. The swelling characteristics of prepared samples were investigated in conditions of various ionic strength. The influence of xerogels’ particles size on swelling properties was also observed. The viscoelastic characteristics of hydrogel form of all SAP were determined by using of rotation rheometer. The changing of viscoelastic properties were studied in dependence on time, on freezing and on repeating swelling cycles. On top of that the controlled releasing ability of SAP was tested due to three modelling experiments. The biological activity of all polymer products was tested at the end of the thesis. All samples of SAP were incorporated into the artificial soil and the ability of the water retention in the soil was observed. The growing experiments were running by using of corn plants. The size and the mass of each plant were measured and branching of the root was objectively evaluated by programme Harmonic and Fractal Image Analyzer.
Rheology as a powerful tool for the complex characterization of hydrogels
Kadlec, Martin ; Kráčalík, Milan (referee) ; Smilek, Jiří (advisor)
This diploma thesis investigates the suitability of relaxation tests as a part of complex characterization of hydrogel materials using classical rheology methods. With respect to the current research, creep and three interval thixotropy tests were taken into account. For them, general optimization was done aiming to find an ideal parameter settings. The optimization was performed using physically crosslinked agarose (AG) hydrogel and the tuned tests were also applied to two more samples: hyaluronan (HyA) and polyvinyl alcohol (PVAl) gel. These materials were selected due to their mutually different crosslinking principle. The experiments showed, the AG gel proved to have the best ability to recover after deformation of all studied samples. On the other hand, the HyA gel relaxed the worst. Although the final results of both tests were comparable, the regeneration process itself was different. Hence, the complex relaxation characteristics cannot be described using one of the performed tests alone and both the creep and three interval thixotropy tests have great importance in the scope of complex relaxation behaviour. The obtained results may lead to more precise description of deformation and relaxation, which are frequent phenomena occurring during treatment and application of hydrogel materials.
Study on kinetic stability of suspension with magnetorheological properties
Vlachová, Kristýna ; Kráčalík, Milan (referee) ; Smilek, Jiří (advisor)
Sedimentation in magnetorheological (MR) fluids is undesirable for many technological applications. For this reason, several ways have been proposed to prevent sedimentation instability. This thesis deals specifically with the addition of a suitable additive. The topic was examined based on available literature and according to it was suggested a procedure for the experimental part. Two types of MR liquids with different composition and preparation method were prepared. The first suspensions included a water-in-oil emulsion as a carrier liquid and Span 80 and Tween 80 as additives. For the second MR fluids, the continuous phase was a blend of bearing oils and the suspension was stabilized with organoclay. In both cases, carbonyl iron particles with a diameter of 1,8–2,3 µm were used. The kinetic stability of the prepared MR fluids was monitored and compared using an analytical centrifuge.
Interfacial rheology as the effective tool to description of interfacial behaviour of biofilms
Kachlířová, Helena ; Kráčalík, Milan (referee) ; Smilek, Jiří (advisor)
The aim of this diploma thesis is to optimize a method of interfacial rheology for testing the interfacial behaviour of biofilms on the liquid-air interface and after that use the method for studying the biofilm formation under optimal and stress conditions. For studying the biofilm formation, Kombucha was used. It is a microbial culture forming a cellulose biofilm on the interface. As the stress conditions, reduction of sucrose concentration, change of pH and change of ionic strength was used. Next, the ability of regeneration of biofilm formed on the interface was studied. The biofilm formation was occured in all cases except of increasing ionic strength. As expected, the best biofilm biofilm growth was observed under optimal condition, which means a sucrose concentration 100 g/l.
Preparation and Characterization of Mixed Hydrogels Based on the System Hyaluronan-Albumin
Hájovská, Pavla ; Kráčalík, Milan (referee) ; Kalina, Michal (advisor)
This diploma thesis deals with preparation and subsequent characterization of albumin (BSA) and mixed hyaluronan-albumin (HA+BSA) hydrogels. The experimental characterization was based on the rheological measurements of the influence of ionic strength, pH and molar mass of HA on the gelation process and the properties of formed gels, as well as the time stability of these properties. Following object of the study was swelling of hydrogels in water and buffers with different pH value. Characterization was extended by thermal analysis, morphology description using scanning electron microscopy (SEM) and study of transport properties of hydrogels for selected model substance. Due to increasing ionic strength, the gel point was shifted towards higher temperature values and the resulting gels exhibited higher values of complex moduli. In case when pH was lower than isoelectric point of BSA, attractive electrostatic interactions between albumin and hyaluronan took place and the faster gelation occurred, compared to the case when pH was higher than isoelectric point of BSA. On the contrary, values of complex moduli increased with increasing pH. The gel samples prepared in the presence of low molecular weight HA reached higher values of complex moduli, compared to samples with the high molecular weight HA. Rheological properties of BSA gels were stable over time, whereas the mixed HA+BSA were characterized by significant decrease of complex moduli during the first three days of storage. Due to heating up to 100 °C, more than 80 % of the weight of studied samples was lost, as a result of water evaporation. Further heating of hydrogels, up to 250 °C, did not cause other changes associated with weight loss, in contrast with crystalline powder BSA, in which another weight loss at 220 °C was observed, as a result of the beginning degradation. Swelling studies, as well as SEM images, indicated higher crosslink density of BSA gels, compared to HA+BSA samples, which exhibited higher values of swelling ratio. The lowest values of equilibrium swelling ratio were observed at pH 4, which is close to the isoelectric point of albumin. Calculated diffusion coefficients relative to diffusivity of methylene blue in water ranged between the order of 10E-2 for diffusion into physiological solution and the order of 10E-3 for the diffusion into water. Ongoing transport of model dye from gel to solution was significantly slower, compared to its diffusion in water, as a result of gel porosity and electrostatic immobilization of positively charged molecules of methylene blue on the negatively charged BSA and HA chains.
Study of transport processes using microrheological techniques in hydrogels
Píšová, Denisa ; Kráčalík, Milan (referee) ; Smilek, Jiří (advisor)
This diploma thesis is focused on the determintaion of viscoelastic properties of agarose hydrogels containing different polyelectrolytes by microrheological and macrorheological techniques. From microrheological techniques the dynamic light scattering was used. Firstly, the influence of different polyelectrolyte volume was studied. Then the effect of variously charged polyelectrolyte and ionic strenght on microrheological properties of agarose hydrogels were determined. Classic rheology was used to compare the results obtained using the DLS microrheology method. Finally, the results from macro- and microrheology were correlated with each other.
Utilization of advanced rheological techniques for the study of biological systems
Krňávková, Šárka ; Kráčalík, Milan (referee) ; Smilek, Jiří (advisor)
A new method for determining viscoelastic properties on the interfacial interface called interfacial rheology was intoduced and investigated. Measured data were compared with data from tanziometer for model system of surfactant. Three concentration renge of surfactant, namely SDS (anionic), TTAB (cationic) and Tween (nonionic), were measured. From the measured data the influence of structure, critical micellar concentration and charge on the viscoelastic properties of the interfacial interface was determined. Furthermore, this new method was used for biological systems and specifically for biofilms of two bacterial strains. First, the viscoelastic properties of biofilms on the agar were determined, and the viscoelastic properties dependence on temperature

National Repository of Grey Literature : 25 records found   previous11 - 20next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.