National Repository of Grey Literature 31 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Evaluation of electrochemical characteristics of AZ61 wrought magnesium alloy
Kotek, Jakub ; Minda, Jozef (referee) ; Fintová, Stanislava (advisor)
This work is focused on evaluation the electrochemical characteristics of AZ61 wrought magnesium alloy. Electrochemical impedance spectroscopy and potentiodynamic tests were used to evaluate the electrochemical characteristic of the alloy. Values of polarization resistance were determined with electrochemical impedance spectroscopy. Values of corrosion potential and corrosion current density were determined with potentiodynamic tests. Sodium chloride solution at a concentration of 0.1 mol·dm-3 was used as a corrosion medium. Outcome of this work is to estimate an influence of fabrication, chemical composition and surface treatment on the corrosion properties of magnesium alloy.
Zn and Mg based bulk materials for biomedical applications
Ryšťák, Jaroslav ; Fintová, Stanislava (referee) ; Doležal, Pavel (advisor)
Topic of the diploma thesis is Zn-Mg bulk material preparation by powder mixtures sintering at hot pressing. Structure, porosity and physically mechanical properties of prepared bulk materials were evaluated. Obtained results and their interpretation were served as feedback for following optimization of individual processing parameters of bulk materials preparation. Solution of diploma thesis is focused on study and control of processes during bulk material preparation and processes description from physical-chemical point of view with respect to structure creation and final material properties.
Preparation and properties of porous zinc material
Ryšťák, Jaroslav ; Fintová, Stanislava (referee) ; Doležal, Pavel (advisor)
Bachelor thesis is focused on preparation of bulk material prepared from zinc powder by cold pressing followed by sintering. Topic of the work includes characterization of prepared material depending on the choice of the compaction process conditions. Bulk material is characterized by physical-mechanical tests, structure and porosity. Thesis solving and focuses on study and control of processes during bulk material preparation and description of the processes from physically-chemical point of view of the structure creation and final material properties.
Corrosion of biodegradable magnesium alloys in Hank's solutions
Faltejsek, Petr ; Fintová, Stanislava (referee) ; Doležal, Pavel (advisor)
The aim of the thesis was to design a methodology for in-situ evaluation of degradation of selected magnesium alloys using AFM in SBF solutions. Study of the degradation of magnesium alloys in a chemically different corrosive environments of simulated body fluid (SBF - Hank's solution). For the pilot study were used magnesium alloys AZ31 and AZ61, manufactured by advanced method of squeeze casting. Part of the thesis was to evaluate the influence of the chemical composition and structure on the degradation properties of these alloys.
Electrochemical corrosion characteristics of Mg-Zn systems prepared by powder metallurgy
Kotek, Jakub ; Hadzima, Branislav (referee) ; Fintová, Stanislava (advisor)
The diploma thesis deals with evaluation of electrochemical corrosion characteristics of Mg-Zn systems prepared by powder metallurgy in SBF solution. The main aim of the thesis is to analyze the influence of chemical composition, achieved structure and parameters of the process of production of Mg-Zn systems on their electrochemical corrosion characteristics. The basic electrochemical properties of the prepared materials will be evaluated by electrochemical impedance spectroscopy. In order to clarify the mechanism of corrosion of materials, the immersion tests will be used, accompanied by metallographic observations.
Ni-P based coatings preparation on wrought magnesium alloys
Buchtík, Martin ; Fintová, Stanislava (referee) ; Wasserbauer, Jaromír (advisor)
The aim of this diploma thesis was summary of all steps and knowledge necessary to deposition of quality Ni-P coatings deposited on wrought magnesium alloys AZ31 and AZ61. There is the treatise about wrought magnesium alloys AZ31 and AZ61. Thesis includes its phase composition in the theoretical part. There are given its possible processing methods too. Next, there is desribed the mechanism of deposition of Ni-P coatings, components required to electroless deposition and factors affecting the quality and properties of these coatings. The theoretical part is ended by serie of reviews. Authors of these reviews deal with pretreatment of substrates, preparation, characterization and measuring of mechanical, structure and corrosion properties of deposited coatings. The optimalization of pretreatment, parametres and composition of nickel bath suitable for magnesium alloys is described in experimental part. The microstructure, present interlayer between substrate and Ni-P coating and chemical composition of deposited coatings was observed and measured by optical and electron microscopy. The mechanical characterization of Ni-P coatings was performed by microhardness tester.
Behaviour of the Interface of Low Toughness Materials
Halasová, Martina ; Pabst, Willi (referee) ; Tatarko, Peter (referee) ; Fintová, Stanislava (referee) ; Chlup, Zdeněk (advisor)
The work is focused on evaluation of factors influencing behaviour of interface in low toughness ceramic materials reinforced with fibres. The main aim was to characterise processing effects influencing the quality of fibre-matrix interface, with respect to final behaviour of composites at various loading type. The partial goal was to map the possibility of influencing the composite material by choice of matrix material, eventually by change of its processing, leading to change of interfacial properties without need of modification of reinforcement surface. The materials used in studied composites as a matrix were based on thermal transformation of polymer precursors, thus, the resulting materials were characterised in partially as well as in fully pyrolyzed state. Behaviour of interface in cpomposite materials was first evaluated from the global behaviour (i.e., change of mechanical properties) and in chosen representative composites also from the point of local changes in close surrounding of the interface (i.e., microstructure, chemical processes, fracture-mechanic processes, etc.) due to thermal exposition. In experiment were used particularly composite materials prepared by pyrolysis of polysiloxane resins reinforced by basalt fibres or Nextel™720 fibres. With respect to thermal resistance of the reinforcement, the basalt reinforced composites contained only partially pyrolyzed matrix (i.e., to temperature of 800°C), and in composites with Nextel™720 reinforcement was the matrix in form of fully pyrolyzed polymer into ceramic (SiOC). At partial pyrolysis of polysiloxane resin occurs rapid change of behaviour at temperature of 600°C. It was demonstrated, that around this temperature the formed interface with basalt fibre exhibits optimum adhesion/strength, allowing to reach sufficient level of composite strength at acceptable fracture toughness. Above temperature of 750°C occur significant difusion processes in the area of the interface and formation of new crystalline phases in the fibre, what deteriorates the fibre strength, and on the contrary, strengthen the interface cohesion, what leads to degradation of properties of the whole composite. At composite materials determined for high temperatures, reinforced by Nextel™720 fibres, was detected significant resistivity against oxidation caused especially by fully pyrolyzed matrix. As similarly important factor was observed the formation of mullite interphase in surface area of the fibre. Volume changes caused by formation of the interphase, difusional transport of the matter and thermal exposition led to formation of thermally and stress-induced micro-cracks, weakening interfacial surrounding in matrix as well as in fibre. This mechanism in contrast to amplifying chemical bond between fibre and matrix led to preserving of the composite properties also at high temperatures up to 1500°C. The work also dealed with effects of loading rate, where in contrast to static loading were observed different failure mechanisms. Realized research led to description and explanation of the influence of the fibre-matrix interface by change of matrix material processing parameters, which allow processing of economically advantageous and thermally stable composite.
Preparation and Characterization of Advanced Thermally-sprayed Coatings on Magnesium Alloys
Buchtík, Martin ; Hadzima, Branislav (referee) ; Fintová, Stanislava (referee) ; Ptáček, Petr (advisor)
The proposed dissertation thesis deals with the characterization of HVOF and APS-thermally sprayed coatings prepared on the AZ31 and AZ91 magnesium substrates. The theoretical part of the thesis describes in-detail Mg substrates used in the experimental part of the thesis. There are also characterized materials and coatings based on NiCrAlY and FeCrNiMoSiC metals, WC-CoCr cermets, and YSZ ceramic materials. At the end of the theoretical part, the literary research summarizing the characterization and analysis performed on thermally sprayed coatings on Mg alloys. Based on the theoretical knowledge, the characterization of Mg substrates and deposited coatings was performed in terms of the surface morphology, microstructure, and the chemical composition using the light microscopy (LM) and scanning electron microscopy with energy-dispersive spectroscopy (SEM+EDS). The phase composition of the coatings was analyzed using the X-ray diffraction (XRD). The diffractions corresponding to the sprayed coatings were compared with the feedstock powders, i.e. materials used for the spraying of the coatings. The characterization of the prepared coatings in terms of the mechanical and tribological properties was performed. The hardness and microhardness of the coatings as well as the coefficient of friction, and the wear rate were measured. The last chapter of the experimental part deals with the evaluation of the electrochemical corrosion properties by the potentiodynamic measurements in a 3.5% NaCl solution. In the case of exposed samples, the evaluation of the surface and coating/substrate interface was performed using LM and SEM with EDS. The mechanism of the corrosion attack and degradation was determined from the acquired knowledge and base on the results of the short-term measurements. Based on the measured results, it can be stated that the deposited coatings were successfully applied on the surface of both Mg alloys. All the coatings increase the surface hardness of the Mg alloys and significantly improve their tribological properties. However, except for FeCrNiMoSiC coatings, the corrosion properties of Mg alloys deteriorate due to the fact that the corrosion environment can pass through the coating to the less noble Mg substrate and the corrosion microcells are created.
Fatigue properties of UFG Ti for biomedicine applications
Dobeš, Ondřej ; Pantělejev, Libor (referee) ; Fintová, Stanislava (advisor)
Titanium is thanks to its high corrosion resistance and biocompatibility widely used in medicine. Ti alloys are used due to their superior mechanical properties instead of pure Ti for load carrying components. Ti alloys are often alloyed with elements which are toxic for human body and further increase cost of Ti products. Main focus of current development is to create pure Ti with better mechanical properties. It can be done by reducing grain size by processes based on severe plastic deformation. The aim of this work is to evaluate fatigue properties as well as fatigue crack initiation and propagation mechanism of Ti grade 2 with the ultrafine grained structure. After microstructure analysis, fatigue tests with symmetrical loading were executed. Fracture surfaces of ultrafine grained Ti grade 2 were observed after fatigue tests for identification of failure mechanism. Results were compared with those for course-grained Ti grade 2.
Evaluation of electrochemical characteristics of AZ61 magnesium alloy processed by squeeze casting
Pikner, Jan ; Hadzima, Branislav (referee) ; Fintová, Stanislava (advisor)
Bachelor thesis deals with the characterization of electrochemical corrosion properties of AZ61 magnesium alloy prepared by squeeze casting method. The theoretical part of the work focuses on properties of AZ61 alloy, influence of alloying elements on magnesium alloys and corrosion. The practical part of the work deals with electrochemical characteristics of AZ61 alloy with different surface condition in of 0.1 M NaCl solution. Corrosion potential (Ekor) and corrosion current density (ikor) were determined by potentiodynamic test. Polarisation resistance was determined by electrochemical impedance spectroscopy. Based on the measured results was discussed the influence of production, chemical composition, structure and surface treatment (grinding and polishing) on corrosion characteristics of the alloy.

National Repository of Grey Literature : 31 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.