National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Energy metabolism of skeletal muscle
Elkalaf, Moustafa GamalEldin Mahmoud Mohamed ; Anděl, Michal (advisor) ; Drahota, Zdeněk (referee) ; Žurmanová, Jitka (referee)
Skeletal muscle is the largest tissue in the body and plays a marked role in the homeostasis of the body metabolic state. Mitochondria have been proven to contribute to the pathophysiology of various metabolic diseases, either due to defects in their bioenergetic properties or the production of reactive oxygen species. In this work murine myoblasts C2C12 were used as a model of skeletal muscle in vitro, and rat muscle was used to prepare homogenate enriched in the mitochondrial fraction. This work investigates the changes in respiratory parameters in models where mitochondrial oxidative phosphorylation is induced by changing the available consumable substrates in the culture media, such as replacing glucose by galactose, and the effect of treating the cells with high glucose concentration during the process of differentiation on mitochondrial performance. It also investigates the changes in bioenergetic profiles in samples treated with inactive derivatives of the widely used triphenylphosphonium (TPP+) salts to target mitochondria by various probes and antioxidants. The methods used in this study included evaluating mitochondrial parameters in intact and permeabilized cells by real time measurement of the oxygen consumption rate using the extracellular flux analyzer, measuring the enzymatic...
Energy metabolism of skeletal muscle
Elkalaf, Moustafa GamalEldin Mahmoud Mohamed ; Anděl, Michal (advisor) ; Drahota, Zdeněk (referee) ; Žurmanová, Jitka (referee)
Skeletal muscle is the largest tissue in the body and plays a marked role in the homeostasis of the body metabolic state. Mitochondria have been proven to contribute to the pathophysiology of various metabolic diseases, either due to defects in their bioenergetic properties or the production of reactive oxygen species. In this work murine myoblasts C2C12 were used as a model of skeletal muscle in vitro, and rat muscle was used to prepare homogenate enriched in the mitochondrial fraction. This work investigates the changes in respiratory parameters in models where mitochondrial oxidative phosphorylation is induced by changing the available consumable substrates in the culture media, such as replacing glucose by galactose, and the effect of treating the cells with high glucose concentration during the process of differentiation on mitochondrial performance. It also investigates the changes in bioenergetic profiles in samples treated with inactive derivatives of the widely used triphenylphosphonium (TPP+) salts to target mitochondria by various probes and antioxidants. The methods used in this study included evaluating mitochondrial parameters in intact and permeabilized cells by real time measurement of the oxygen consumption rate using the extracellular flux analyzer, measuring the enzymatic...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.