National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Antagonistic regulation by global transcription factors Tup1p, and Cyc8p of Flo11 and Flo11 -dependent phenotypes in wild yeast
Nguyen Van, Phu ; Palková, Zdena (advisor) ; Heidingsfeld, Olga (referee) ; Malcová, Ivana (referee)
Biofilms are a common mode of yeast growth in which cells adhere to each other and adhere to abiotic surfaces to form complex multicellular structures. Living together in biofilms provides cells with several beneficial features compared to planktonic cells. Undoubtedly, protection and resistance are advantages of life inside colony biofilms. Biofilms are found in many environments and play many important roles in commercial industries. However, biofilms can also be extremely dangerous in clinical settings. There is thus great interest in studying biofilms and how to eliminate them. In this study, we used wild yeast Saccharomyces cerevisiae colony biofilm as an ideal system to investigate potential functions of the yeast Cyc8-Tup1 transcriptional corepressor complex in the regulation of yeast adhesion, and biofilm formation on agar and at solid-liquid interfaces. Unexpectedly, we have found that Cyc8p and Tup1p antagonistically control the formation of structured biofilm colonies on agar and FLO11 expression. Cyc8p itself acts as a key repressor of FLO11, whereas Tup1p promotes the formation of biofilm colonies and induces FLO11 expression by inhibiting the repressive function of Cyc8p and preventing Flo11p degradation possibly by inhibiting an extracellular protease. In addition, other features...
Antagonistic regulation by global transcription factors Tup1p, and Cyc8p of Flo11 and Flo11 -dependent phenotypes in wild yeast
Nguyen Van, Phu ; Palková, Zdena (advisor) ; Heidingsfeld, Olga (referee) ; Malcová, Ivana (referee) ; Demnerová, Kateřina (referee)
Biofilms are a common mode of yeast growth in which cells adhere to each other and adhere to biotic and abiotic surfaces to form complex multicellular structures. Living together in biofilms provides cells with several benefits, compared to planktonic cells such as protection and resistance to antimicrobials, environmental stresses and host immune attacks. Biofilms may play many important roles in commercial industries. But they are considered to be extremely dangerous in clinical settings. There is thus great interest in studying biofilms and how to eliminate them. In this study, we used wild yeast Saccharomyces cerevisiae colony biofilm as an ideal system to investigate potential functions of the yeast Cyc8p-Tup1p transcriptional corepressor complex in the regulation of yeast adhesion and biofilm formation on agar and at solid-liquid interfaces. Unexpectedly, we found that Cyc8p and Tup1p antagonistically control FLO11 expression and the formation of structured biofilm colonies on agar. Cyc8p itself acts as a key repressor of FLO11 and biofilm colony formation, whereas Tup1p promotes the formation of biofilm colonies and induces FLO11 expression by inhibiting the repressive function of Cyc8p and preventing Flo11p degradation possibly by inhibiting an extracellular protease. Other typical features...
Antagonistic regulation by global transcription factors Tup1p, and Cyc8p of Flo11 and Flo11 -dependent phenotypes in wild yeast
Nguyen Van, Phu ; Palková, Zdena (advisor) ; Heidingsfeld, Olga (referee) ; Malcová, Ivana (referee)
Biofilms are a common mode of yeast growth in which cells adhere to each other and adhere to abiotic surfaces to form complex multicellular structures. Living together in biofilms provides cells with several beneficial features compared to planktonic cells. Undoubtedly, protection and resistance are advantages of life inside colony biofilms. Biofilms are found in many environments and play many important roles in commercial industries. However, biofilms can also be extremely dangerous in clinical settings. There is thus great interest in studying biofilms and how to eliminate them. In this study, we used wild yeast Saccharomyces cerevisiae colony biofilm as an ideal system to investigate potential functions of the yeast Cyc8-Tup1 transcriptional corepressor complex in the regulation of yeast adhesion, and biofilm formation on agar and at solid-liquid interfaces. Unexpectedly, we have found that Cyc8p and Tup1p antagonistically control the formation of structured biofilm colonies on agar and FLO11 expression. Cyc8p itself acts as a key repressor of FLO11, whereas Tup1p promotes the formation of biofilm colonies and induces FLO11 expression by inhibiting the repressive function of Cyc8p and preventing Flo11p degradation possibly by inhibiting an extracellular protease. In addition, other features...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.