National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Reliability Analysis of Steel Columns with Encased Web in High Strength Concrete under Compression
Puklický, Libor ; Krejsa,, Martin (referee) ; Melcher, Jindřich (referee) ; Kala, Zdeněk (advisor)
The presented paper deals with a theoretical analysis of the ultimate limit state. The results of experimental research carried out at the Institute of Metal and Timber Structures headed by Assoc. Prof. Karmazinová and Professor Melcher were applied. The geometrically and materially nonlinear solution based on the Timošenko’s solution is verified by the FEM model in the computer programme system ANSYS. The random influence of initial imperfections is taken into consideration. The FEM model also includes the influence of residual stress. In the parametric study, the influence of residual stress on the cross-section plastification is researched into, its influence on the load carrying capacity limit is, together with the influence of other imperfections, the subject of the stochastic analysis, applying the Latin Hypercube Sampling (LHS). Further on, the study proves a direct effect of the concrete part of the cross-section (combination of materials steel-concrete) on the decrease of load carrying capacity limit of the beam caused by influence of the residual stress of steel. With regard to the importance of time dependent phenomena of the concrete creep for the load carrying capacity, the studies given in the Ph.D. thesis are oriented in this respect. The parametric studies of the influence of the concrete creep having applied the Standard Eurocode 2 provide both a comparison of load carrying capacity limits when using common and high-strength concrete types, and also the variability of load carrying capacities. It follows from the comparison of the statistical analysis outputs according to the design reliability conditions of the Standard EN1990 and of the approach of Eurocode 4 that the Eurocode 4 can be recommended for dimensioning of this member type. According to the studies which we carried out, the design in compliance with Eurocode 4 can be evaluated as the reliable one. A larger set of experimental data is necessary to determine the economy.
Sensitivity analysis of stability problems of steel structures
Valeš, Jan ; Vičan,, Josef (referee) ; Kučerová,, Anna (referee) ; Melcher, Jindřich (referee) ; Kala, Zdeněk (advisor)
The doctoral thesis is focused on evaluation of global sensitivity analysis of load-carrying capacity of steel hot-rolled beams. These beams are subjected to lateral-torsional buckling, weak axis buckling and strong axis buckling. Very comprehensive computational models which were both geometrically and materially nonlinear were created in Ansys software using solid finite elements to calculate the load-carrying capacity. The computational models allowed modelling of random initial imperfections such as initial curvature, deviations of cross-section dimensions and steel properties. Sensitivity analysis quantified their influence on the load-carrying capacity. Simulation runs of random imperfections were generated using the Latin Hypercube Sampling method. Since the evaluation of sensitivity analysis of load-carrying capacity of all finite element models would cost an extreme amount of computer time, the thesis aimed at developing a meta-model (also known as surrogate model) based on approximation of FEM model. The approximation polynomial then facilitated the evaluation of sensitivity indices using a high number of simulation runs. At the end, the relationships between the slenderness and the first and second-order sensitivity indices are plotted in graphs. Those random input imperfections that influence the variability of load-carrying capacity the most are pointed out.
Sensitivity analysis of stability problems of steel structures
Valeš, Jan ; Vičan,, Josef (referee) ; Kučerová,, Anna (referee) ; Melcher, Jindřich (referee) ; Kala, Zdeněk (advisor)
The doctoral thesis is focused on evaluation of global sensitivity analysis of load-carrying capacity of steel hot-rolled beams. These beams are subjected to lateral-torsional buckling, weak axis buckling and strong axis buckling. Very comprehensive computational models which were both geometrically and materially nonlinear were created in Ansys software using solid finite elements to calculate the load-carrying capacity. The computational models allowed modelling of random initial imperfections such as initial curvature, deviations of cross-section dimensions and steel properties. Sensitivity analysis quantified their influence on the load-carrying capacity. Simulation runs of random imperfections were generated using the Latin Hypercube Sampling method. Since the evaluation of sensitivity analysis of load-carrying capacity of all finite element models would cost an extreme amount of computer time, the thesis aimed at developing a meta-model (also known as surrogate model) based on approximation of FEM model. The approximation polynomial then facilitated the evaluation of sensitivity indices using a high number of simulation runs. At the end, the relationships between the slenderness and the first and second-order sensitivity indices are plotted in graphs. Those random input imperfections that influence the variability of load-carrying capacity the most are pointed out.
Reliability Analysis of Steel Columns with Encased Web in High Strength Concrete under Compression
Puklický, Libor ; Krejsa,, Martin (referee) ; Melcher, Jindřich (referee) ; Kala, Zdeněk (advisor)
The presented paper deals with a theoretical analysis of the ultimate limit state. The results of experimental research carried out at the Institute of Metal and Timber Structures headed by Assoc. Prof. Karmazinová and Professor Melcher were applied. The geometrically and materially nonlinear solution based on the Timošenko’s solution is verified by the FEM model in the computer programme system ANSYS. The random influence of initial imperfections is taken into consideration. The FEM model also includes the influence of residual stress. In the parametric study, the influence of residual stress on the cross-section plastification is researched into, its influence on the load carrying capacity limit is, together with the influence of other imperfections, the subject of the stochastic analysis, applying the Latin Hypercube Sampling (LHS). Further on, the study proves a direct effect of the concrete part of the cross-section (combination of materials steel-concrete) on the decrease of load carrying capacity limit of the beam caused by influence of the residual stress of steel. With regard to the importance of time dependent phenomena of the concrete creep for the load carrying capacity, the studies given in the Ph.D. thesis are oriented in this respect. The parametric studies of the influence of the concrete creep having applied the Standard Eurocode 2 provide both a comparison of load carrying capacity limits when using common and high-strength concrete types, and also the variability of load carrying capacities. It follows from the comparison of the statistical analysis outputs according to the design reliability conditions of the Standard EN1990 and of the approach of Eurocode 4 that the Eurocode 4 can be recommended for dimensioning of this member type. According to the studies which we carried out, the design in compliance with Eurocode 4 can be evaluated as the reliable one. A larger set of experimental data is necessary to determine the economy.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.