National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Real-Time Rendering of a Scene With Many Pedestrians
Pfudl, Václav ; Milet, Tomáš (referee) ; Herout, Adam (advisor)
The aim of this thesis was to implement a software that would be able to render, simulate and record a scene with walking pedestrians in real-time, with emphasis on rendering level of realism. The output of the application could serve as an input test data for people counting systems or similar systems for video recognition. The problem was divided into three major subproblems: character animation, artificial intelligence for character movement and advanced rendering techniques. The character animation problem is solved by the skeletal animation of the model. To achieve the characters moving in a scene autonomously path finding(A* algorithm) and group behaviors(steering behaviors) were implemented. Realism in a scene is added by implemented methods such as normal-mapping, variance shadow-mapping, deffered rendering, skydome, lens flare effect and screen space ambient occlusion. Optimaliaztion of the rendering was implemented using octree data structure for space partitioning. Rendering stage of a scene can be easily parametrized through implemented GUI. Implemented application provides the user with easy way of setting a scene with walking pedestrians, setting its visualization and to record the result.
Real-Time Rendering of a Scene With Many Pedestrians
Pfudl, Václav ; Milet, Tomáš (referee) ; Herout, Adam (advisor)
The aim of this thesis was to implement a software that would be able to render, simulate and record a scene with walking pedestrians in real-time, with emphasis on rendering level of realism. The output of the application could serve as an input test data for people counting systems or similar systems for video recognition. The problem was divided into three major subproblems: character animation, artificial intelligence for character movement and advanced rendering techniques. The character animation problem is solved by the skeletal animation of the model. To achieve the characters moving in a scene autonomously path finding(A* algorithm) and group behaviors(steering behaviors) were implemented. Realism in a scene is added by implemented methods such as normal-mapping, variance shadow-mapping, deffered rendering, skydome, lens flare effect and screen space ambient occlusion. Optimaliaztion of the rendering was implemented using octree data structure for space partitioning. Rendering stage of a scene can be easily parametrized through implemented GUI. Implemented application provides the user with easy way of setting a scene with walking pedestrians, setting its visualization and to record the result.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.