National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
3D geomechanical numerical model of roadways, building of underground research facility (URF) Bukov II. stage
Souček, Kamil ; Gong, Libin ; Waclawik, Petr ; Vavro, Martin
Spin-off plant GEAM of DIAMO, state enterprise, intends the construction of 2nd stage of the underground research facility (URF) Bukov in the area of the Rožná uranium deposit. The aim of this work is to compile the 3D mathematical geomechanical model of projected URF excavations in software for numerical modeling FLAC 3D. The main output of numerical modeling is the analysis of the “strength factor” distribution (SF factor) reflecting the stability of the rock mass after the excavation of laboratory roadways and testing chambers of URF
Final research report to the project PB-2014-ZL-U2301-004-BUKOV
Souček, Kamil ; Vavro, Martin ; Staš, Lubomír ; Kaláb, Zdeněk ; Koníček, Petr ; Georgiovská, Lucie ; Kaláb, Tomáš ; Konečný, Pavel ; Kolcun, Alexej ; Králová, Lucie ; Kubina, Lukáš ; Lednická, Markéta ; Malík, Josef ; Martinec, Petr ; Ptáček, Jiří ; Vavro, Leona ; Waclawik, Petr ; Zajícová, Vendula
Bukov Underground Research Facility (Bukov URF) has been built as a test site to assess the properties and behaviour of the rock mass analogous to selected candidate sites. It is situated at a depth corresponding to the proposed storage depth of the final locality for the Czech Republic´s deep repository of high-level radioactive waste. Bukov URF is located in the Vysočina Region, the cadastral district of Bukov, approx. 3 km south-eastwards from the municipality of Dolní Rožínka. The underground research facility is placed approx. 300 m from the Bukov-1 shaft, namely on the level 12 of the shaft, at the depth of about 550 – 600 meters below the Earth’s surface. As for the regional geology, Bukov URF is found at the southern part of the Rožná uranium deposit, at the north-eastern edge of the Strážek Moldanubicum close to its contact with the Svratka Unit. The rock mass is composed of a relatively monotonous sequence of differently migmatized biotite gneisses to stromatic migmatites, continuing with amphibole-biotite to biotite-amphibole gneisses and amphiboles, with occasional fine intercalations of aplites, pegmatites or calc-silicate rocks (erlanes). Between 2013 and 2017 and within the complex geotechnical characterization of the Bukov URF, the Institute of Geonics of the Czech Academy of Sciences (Ústav geoniky AV ČR, v.v.i.) in Ostrava carried out a series of laboratory and field works in order to provide a detailed description of the geotechnical and geomechanical properties and quality of the rock mass. The works included the determination and assessment of the physical-mechanical properties of the rocks sampled from the walls, boreholes and ground surface in the locality, the determination of stress state and deformation properties of the rock mass using the methods of hydrofracturing of borehole walls, Goodman Jack and CCBO, or CCBM, determination of the rock mass quality based on selected index geomechanical properties, periodic, long-term strain-gauge measurements and convergence measurements, and the assessment of the effect of technical and mine-induced seismicity on the rock mass of interest. The implemented set of research works was supposed to render a sufficient and integral whole of geotechnical and geomechanical knowledge vital for the subsequent implementation of extensive research experiments focused on long-term safety and technical feasibility of the future national deep repository of radioactive waste.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.