National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Targeting of viral nanoparticles to cancer specific receptors
Žáčková Suchanová, Jiřina ; Španielová, Hana (advisor) ; Němečková, Šárka (referee) ; Ulbrich, Pavel (referee)
The aim of this thesis is to reveal the potential of mouse polyomavirus (MPyV) based virus-like particles (VLPs) as possible nanocarriers for directed delivery of therapeutic or diagnostic compounds to specific cells or tissues. We have chosen mouse polyomavirus VLPs because they do not contain viral DNA and are considered safe for utilization in bio-applications. In our research, we used a chemical approach for retargeting of MPyV based VLPs from their natural receptor to cancer cells. The chemical modification of the capsid surface exposed lysines by an aldehyde-containing reagent enabled conjugation of VLPs to selected molecules: transferrin and inhibitor of glutamate carboxypeptidase II (GCPII). Transferrin, as a transporter of iron to metabolically active cells, targeted VLPs to numerous types of cancer cells overexpressing the transferrin receptor. On the other hand, GCPII serves as a transmembrane marker specific for prostate cancer cells and conjugation of its inhibitor to VLPs resulted in successful recognition of these cells. Electron microscopy was used for visualization of modified VLPs and flow cytometry together with confocal microscopy for investigation of cell specific interactions and VLP uptake. Furthermore, we explored the influence of serum proteins on VLPs. The abundance of...
Targeting of viral nanoparticles to cancer specific receptors
Žáčková Suchanová, Jiřina
The aim of this thesis is to reveal the potential of mouse polyomavirus (MPyV) based virus-like particles (VLPs) as possible nanocarriers for directed delivery of therapeutic or diagnostic compounds to specific cells or tissues. We have chosen mouse polyomavirus VLPs because they do not contain viral DNA and are considered safe for utilization in bio-applications. In our research, we used a chemical approach for retargeting of MPyV based VLPs from their natural receptor to cancer cells. The chemical modification of the capsid surface exposed lysines by an aldehyde-containing reagent enabled conjugation of VLPs to selected molecules: transferrin and inhibitor of glutamate carboxypeptidase II (GCPII). Transferrin, as a transporter of iron to metabolically active cells, targeted VLPs to numerous types of cancer cells overexpressing the transferrin receptor. On the other hand, GCPII serves as a transmembrane marker specific for prostate cancer cells and conjugation of its inhibitor to VLPs resulted in successful recognition of these cells. Electron microscopy was used for visualization of modified VLPs and flow cytometry together with confocal microscopy for investigation of cell specific interactions and VLP uptake. Furthermore, we explored the influence of serum proteins on VLPs. The abundance of...
Targeting of viral nanoparticles to cancer specific receptors
Žáčková Suchanová, Jiřina
The aim of this thesis is to reveal the potential of mouse polyomavirus (MPyV) based virus-like particles (VLPs) as possible nanocarriers for directed delivery of therapeutic or diagnostic compounds to specific cells or tissues. We have chosen mouse polyomavirus VLPs because they do not contain viral DNA and are considered safe for utilization in bio-applications. In our research, we used a chemical approach for retargeting of MPyV based VLPs from their natural receptor to cancer cells. The chemical modification of the capsid surface exposed lysines by an aldehyde-containing reagent enabled conjugation of VLPs to selected molecules: transferrin and inhibitor of glutamate carboxypeptidase II (GCPII). Transferrin, as a transporter of iron to metabolically active cells, targeted VLPs to numerous types of cancer cells overexpressing the transferrin receptor. On the other hand, GCPII serves as a transmembrane marker specific for prostate cancer cells and conjugation of its inhibitor to VLPs resulted in successful recognition of these cells. Electron microscopy was used for visualization of modified VLPs and flow cytometry together with confocal microscopy for investigation of cell specific interactions and VLP uptake. Furthermore, we explored the influence of serum proteins on VLPs. The abundance of...
Targeting of viral nanoparticles to cancer specific receptors
Žáčková Suchanová, Jiřina ; Španielová, Hana (advisor) ; Němečková, Šárka (referee) ; Ulbrich, Pavel (referee)
The aim of this thesis is to reveal the potential of mouse polyomavirus (MPyV) based virus-like particles (VLPs) as possible nanocarriers for directed delivery of therapeutic or diagnostic compounds to specific cells or tissues. We have chosen mouse polyomavirus VLPs because they do not contain viral DNA and are considered safe for utilization in bio-applications. In our research, we used a chemical approach for retargeting of MPyV based VLPs from their natural receptor to cancer cells. The chemical modification of the capsid surface exposed lysines by an aldehyde-containing reagent enabled conjugation of VLPs to selected molecules: transferrin and inhibitor of glutamate carboxypeptidase II (GCPII). Transferrin, as a transporter of iron to metabolically active cells, targeted VLPs to numerous types of cancer cells overexpressing the transferrin receptor. On the other hand, GCPII serves as a transmembrane marker specific for prostate cancer cells and conjugation of its inhibitor to VLPs resulted in successful recognition of these cells. Electron microscopy was used for visualization of modified VLPs and flow cytometry together with confocal microscopy for investigation of cell specific interactions and VLP uptake. Furthermore, we explored the influence of serum proteins on VLPs. The abundance of...
Targetting prostate tumor cells by polyomavirus virus-like particles
Suchanová, Jiřina ; Španielová, Hana (advisor) ; Němečková, Šárka (referee)
The aim of this thesis is to investigate the targeting potential of mouse polyomavirus (MPyV) based virus-like particles (VLPs) as vectors for directed cell delivery of therapeutic or diagnostic compounds. Major capsid protein VP1 of MPyV is able to selfassemble into the noninfectious VLPs. Our main goal is to retarget these VLPs from its native receptor to the prostatic cancer cells by changing the receptor binding site in the surface-exposed loop of VP1. We introduced a peptide ligand CTITSKRTC, which binds prostate-specific membrane antigen (PSMA), by insertion or substitution into BC loop of VP1. These modifications did not change the stability of the particles and genetic substitution prevented the native receptor binding. PSMA-specific binding of modified VLPs was tested by pull-down assay and surface plasmon resonance. In order to further utilize these VLPs, we tested several approaches for preparation of VLPs as vehicles for compounds delivery into eukaryotic cells. Although the method for encapsidation of the DNA into the VLPs in cellular nuclear extracts, which mimic the in vivo conditions, did not enabled us to produce pseudocapsids, we successfully optimized procedure for dissassembly and reassembly of purified particles. This method will be use for encapsidation of molecules into the...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.