National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Adaptor domains in signalling proteins: phosphorylation analysis and a role in mechanosensing
Tatárová, Zuzana ; Novotný, Marian (advisor) ; Doležal, Pavel (referee)
P130Cas (Crk-associated substrate, CAS) is a multiadaptor protein important in integrin signalling where it positively regulates cell motility, invasion, proliferation and survival. CAS lacks enzymatic activity, but its binding to other signalling proteins could lead to the change of phosphorylation status of its substrate domain, which is the main mode, through which CAS takes part in regulating cell behavior. Local tensions in focal adhesions lead to an extension of CAS substrate domain, leaving phosphorylation sites more accessible for kinases, which subsequently leads to an increased CAS substrate domain phosphorylation. The CAS anchorage in focal adhesions is mediated by its SH3 domain, probably through the interactions with FAK, and also by C-terminal domain, where interaction partners are not known. The aim of my project is to find out, which proteins mediate the CAS anchorage to the focal adhesions. The elucidation of CAS anchorage to focal adhesions will contribute to the understanding of mechanosensory function of CAS. Experimental data suggest that tyrosine phosphorylation of the CAS SH3 domain plays an important role in the regulation of its binding properties. Another goal of my diploma project was to analyze the significance of tyrosine phosphorylation within SH3 domain and other...
New regulatory mechanisms of microtubule nucleation
Černohorská, Markéta ; Dráber, Pavel (advisor) ; Binarová, Pavla (referee) ; Hašek, Jiří (referee)
MT nucleation from γ-tubulin complexes, located at centrosome, is an essential step in the formation of MT cytoskeleton. In mammalian cells, -tubulin is encoded by two genes. We functionally characterized two γ-tubulin proteins and have found that both are functionally equivalent. γ-Tubulin 2 is able to substitute for γ-tubulin 1 in MT nucleation. However, we revealed that unlike TUBG1, TUBG2 expression is downregulated in mouse preimplantation development. Mast cells represent effectors of the allergy reaction. Their activation by antigen induces number of cellular processes such as degranulation, proliferation and cytoskeleton rearrangements. The regulatory mechanisms of MT reorganization during mast cell activation are unknown. We identified new signaling proteins, GIT1 and PIX that interact with - tubulin. Depletion of GIT1 or PIX leads to changes in MT nucleation. GIT1 is phosphorylated on tyrosine and associates with γ-tubulin in a Ca2+ -dependent manner. Our data suggested a novel signaling pathway for MT rearrangement in mast cells where tyrosine kinase-activated GIT1 and βPIX work in concert with Ca2+ signaling to regulate MT nucleation. We tested the capability of GIT1 and PIX to influence -tubulin function in more cell types. We found out that GIT1/βPIX signaling proteins together...
Adaptor domains in signalling proteins: phosphorylation analysis and a role in mechanosensing
Tatárová, Zuzana ; Novotný, Marian (advisor) ; Doležal, Pavel (referee)
P130Cas (Crk-associated substrate, CAS) is a multiadaptor protein important in integrin signalling where it positively regulates cell motility, invasion, proliferation and survival. CAS lacks enzymatic activity, but its binding to other signalling proteins could lead to the change of phosphorylation status of its substrate domain, which is the main mode, through which CAS takes part in regulating cell behavior. Local tensions in focal adhesions lead to an extension of CAS substrate domain, leaving phosphorylation sites more accessible for kinases, which subsequently leads to an increased CAS substrate domain phosphorylation. The CAS anchorage in focal adhesions is mediated by its SH3 domain, probably through the interactions with FAK, and also by C-terminal domain, where interaction partners are not known. The aim of my project is to find out, which proteins mediate the CAS anchorage to the focal adhesions. The elucidation of CAS anchorage to focal adhesions will contribute to the understanding of mechanosensory function of CAS. Experimental data suggest that tyrosine phosphorylation of the CAS SH3 domain plays an important role in the regulation of its binding properties. Another goal of my diploma project was to analyze the significance of tyrosine phosphorylation within SH3 domain and other...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.