National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Study of the substrate specificity of the LACTB tumour suppressor enzyme
Baudyšová, Alžběta ; Kečkéšová, Zuzana (advisor) ; Janečková, Lucie (referee)
Serine beta-lactamase-like protein (LACTB) is a tumour suppressor that modulates mitochondrial lipid metabolism and induces differentiation of breast cancer cells. This is achieved by the LACTB-dependent downregulation of phosphatidylserine- decarboxylase (PISD) which subsequently leads to decreases in the amounts of phosphatidylethanolamines and lysophosphatidylethanolamines in mitochondrial membranes. However, PISD was shown to not be a direct substrate of the LACTB enzyme what leaves the identity of the LACTB substrate an open question. To fill this important gap in the mechanism of the LACTB tumour suppressive pathway, this diploma thesis was focused on finding a physiological substrate of LACTB via Proteomic Identification of protease Cleavage Sites (PICS) assay. For this purpose, the other sub-aims of this project were to isolate recombinant wild-type LACTB and its catalytic mutant, to reveal ideal in vitro conditions for LACTB activity and to find out the requirements needed for LACTB multimerization. My results show that in vitro activity of LACTB is increased in the presence of higher pH and calcium ions. I also show that higher LACTB multimeric forms are bound together via disulfide bonds as they disintegrate after treatment with dithiothreitol. Furthermore, and most importantly, I show...
Study of the substrate specificity of the LACTB tumour suppressor enzyme
Baudyšová, Alžběta ; Kečkéšová, Zuzana (advisor) ; Janečková, Lucie (referee)
Serine beta-lactamase-like protein (LACTB) is a tumour suppressor that modulates mitochondrial lipid metabolism and induces differentiation of breast cancer cells. This is achieved by the LACTB-dependent downregulation of phosphatidylserine- decarboxylase (PISD) which subsequently leads to decreases in the amounts of phosphatidylethanolamines and lysophosphatidylethanolamines in mitochondrial membranes. However, PISD was shown to not be a direct substrate of the LACTB enzyme what leaves the identity of the LACTB substrate an open question. To fill this important gap in the mechanism of the LACTB tumour suppressive pathway, this diploma thesis was focused on finding a physiological substrate of LACTB via Proteomic Identification of protease Cleavage Sites (PICS) assay. For this purpose, the other sub-aims of this project were to isolate recombinant wild-type LACTB and its catalytic mutant, to reveal ideal in vitro conditions for LACTB activity and to find out the requirements needed for LACTB multimerization. My results show that in vitro activity of LACTB is increased in the presence of higher pH and calcium ions. I also show that higher LACTB multimeric forms are bound together via disulfide bonds as they disintegrate after treatment with dithiothreitol. Furthermore, and most importantly, I show...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.