National Repository of Grey Literature 14 records found  previous11 - 14  jump to record: Search took 0.01 seconds. 
Biocomposite material for 3D print in the field of regenerative medicine
Chaloupková, Kateřina ; Obruča, Stanislav (referee) ; Přikryl, Radek (advisor)
The presented thesis deals with preparation of material for use in regenerative medicine based on poly(3-hydroxybutyrate) and its characterization. In addition to poly (3-hydroxybutyrate), there were used other materials lactic acid (PLA), tricalcium phosphate (TCP) and two types of plasticizers Citroflex®B-6 (CB6) and Syncroflex3114 (S3114). These materials were selected based on their biocompatibility and, in the case of TCP, also bioactivity. TCP allows new bone to grow on the surface of the scaffold. PLA was used to improve the mechanical properties of the material. Both plasticizers have been used to improve the processability of the material. Theoretical part of this work contains a literature review describing basic information about used materials. Aim of the experimental part is to prepare the material, characterization of properties and determination of printability on a 3D printer. The material is examined for thermal properties by thermogravimetric analysis and differential scanning calorimetry. This work also deals with the matter of 3D printing, especially FDM technology. It has been found that materials containing the syncroflex plasticizer are better processed and therefore printed on a 3D printer. The printability tests performed are temperature towers and filling studies. Printed samples were subjected to mechanical tests of tensile and bending tests. Experiments of cytotoxicity and biocompatibility of the material were also performed. Within the work, TCP particles were characterized using a particle size analyzer. The average TCP particle size is 10,76 µm. Using SEM-EDX, the distribution of TCP in sample filaments was subsequently observed, where it was found that by mixing TCP particles with the remaining components of materials, TCP particles agglomerate into formations up to 20 µm in size. Roughness of materials was determined by confocal microscopy. Cytotoxicity was also tested in the extracts of samples on mouse fibroblasts. Cytotoxicity was determined by metabolic activity assay and light microscopy. The metabolic activity test proved the biocompatibility of the observed materials; therefore, it was possible to perform cell proliferation and biocompatibility tests directly on the samples. Assays were performed using human mesenchymal stem cells. DNA quantification was used to determine cell proliferation. Shape of cells was subsequently observed by confocal microscopy. Tests confirmed growth of cells and their appropriate shape. Stem cell differentiation into bone was performed by measuring alkaline phosphatase activity.
Multi-phase porous bioceramics bone scaffolds based on calcium phosphates
Smiešková, Jana ; Šťastná, Eva (referee) ; Šťastný, Přemysl (advisor)
This bachelor thesis summarizes findings on subject: Multi-phase porous bioceramics bone scaffolds based on calcium phosphates. The thesis is divided into two parts. The first part is a literary recherche speaking on topic: Tricalcium-phosphate-based bioceramic materials and their interaction with the body of the recipient. The second part is experimental. It describes the preparation of mixed ceramics (mixture of hydroxyapatite (HA) and tricalcium phosphate (TCP)) and evaluation of their microstructure and changes of phase composition.
Development of suspension thermal spray technology for processing of advanced surface treatments
Ráčková, Jana ; Horynová, Miroslava (referee) ; Čelko, Ladislav (advisor)
This bachelor´s thesis deals with thermal spraying technology. The first part is devoted to a literature review, which describes the steps needed to prepare spraying, plasma coating. The thesis describes three basic technologies of plasma sprayed coatings and conventional atmospheric plasma spray powders, atmospheric plasma spraying of suspensions and plasma spraying of precursors.
Particulate composites based on nano HA/TCP particles for bone graft replacements
Suchý, Tomáš ; Rýglová, Šárka ; Balík, Karel ; Sucharda, Zbyněk ; Denk, F.
Particulate composite materials have been developed for applications in the form of an intervertebral cage (for use in spine treatment). The intervertebral cage is composed of a bearing cage made of PEEK and a composite core with the surface contacting the bone surface and ensuring elastic linkage of two vertebral bodies, resulting in good adhesion to the bone. Mechanical analysis of different kinds of particulate composites was performed. The effect of hydroxyapatite and tri-calcium phosphate nanofiller volume fractions on the mechanical properties of particulate composites was investigated.

National Repository of Grey Literature : 14 records found   previous11 - 14  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.