National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Comparison of apo- and holoforms of the transcription factor "Bach1"
Vávra, Jakub
Hemoproteins represent very important components of many living organisms. Participation in the processes of oxygen transport and storage, electron transport or enzymatic catalysis of reactions involving oxygen or hydrogen peroxide are commonly known functions of hemoproteins. Recently, there has been discovered a new group of hemoproteins. The main feature of this new group of proteins is their ability to detect changes in heme concentration (heme-responsive proteins) or changes in diatomic gas concentration (gas-responsive heme-containing sensor proteins) in their vicinity. Detection of these concentration changes generates signals that induce structural changes of the respective sensor proteins. Finally, the structural changes of the respective sensor proteins affect their functions or activities. The subject of this diploma thesis is the preparation and characterization of the eukaryotic heme sensor Bach1. We especially focused on the ability of Bach1 to bind heme molecules and on the comparison of various Bach1 properties in its apoform and holoform. Determination of the exact amount of heme molecules that specifically interact with heme sensor Bach1 represents very important part of this thesis. We also studied the effect of different redox states of heme iron and the presence of interaction...
Study of mechanism of signal transduction in case of two model heme-containing sensor proteins
Mihalčin, Peter ; Martínková, Markéta (advisor) ; Kavan, Daniel (referee)
Heme-based gas sensing proteins belong to a group of proteins that are present in signalling pathways of bacteria. A precise regulation of physiological functions, such as intercellular communication or biofilm production, is essential for the survival of these bacteria and their adaptation to the changing surrounding conditions. Heme-based gas sensors are able to detect the concentration of gas molecules in the local environment via their sensory domain (which contains a heme molecule as the intrinsic detection site) and transmit the signal to the functional domain helping to regulate the adaptation of many processes. These, often pathogenic, processes contribute to extended resistance of bacteria against antibiotics. Heme-based sensors are thus potentially a new therapeutic object of interest in antimicrobial treatment. In order to provide this type of treatment, it is crucial to understand the exact mechanism of intramolecular signal transduction facilitated by heme-based sensors. One of the approaches to unravel these mechanisms is further study of model sensory proteins. This thesis focuses on the analysis of a signal transduction performed by two model globin-coupled heme-based oxygen sensors.
Comparison of apo- and holoforms of the transcription factor "Bach1"
Vávra, Jakub ; Martínková, Markéta (advisor) ; Brynychová, Veronika (referee)
Hemoproteins represent very important components of many living organisms. Participation in the processes of oxygen transport and storage, electron transport or enzymatic catalysis of reactions involving oxygen or hydrogen peroxide are commonly known functions of hemoproteins. Recently, there has been discovered a new group of hemoproteins. The main feature of this new group of proteins is their ability to detect changes in heme concentration (heme-responsive proteins) or changes in diatomic gas concentration (gas-responsive heme-containing sensor proteins) in their vicinity. Detection of these concentration changes generates signals that induce structural changes of the respective sensor proteins. Finally, the structural changes of the respective sensor proteins affect their functions or activities. The subject of this diploma thesis is the preparation and characterization of the eukaryotic heme sensor Bach1. We especially focused on the ability of Bach1 to bind heme molecules and on the comparison of various Bach1 properties in its apoform and holoform. Determination of the exact amount of heme molecules that specifically interact with heme sensor Bach1 represents very important part of this thesis. We also studied the effect of different redox states of heme iron and the presence of interaction...
Characterization of selected properties of model heme-containing sensor proteins
Fojtík, Lukáš ; Martínková, Markéta (advisor) ; Svášková, Dagmar (referee)
Heme sensor proteins are the fourth group of hemoproteins. In this group of hemoproteins heme plays an important role in signalization. Dissociation and/or association of heme detecting proteins serves as an important physiological function in regulation of enzyme activity or gene expression. In this bachelor thesis all the actual knowledge about selected forms of eukaryotic heme sensor proteins previously published in scientific articles are summarized. The experimental part of this bachelor thesis is focused on preparation of recombinant protein heme regulated inhibitor (HRI) and its substrate eukaryotic translation initiation factor 2 alpha (eIF2α). Firstly the preparation of the plasmids with genes HRI and eIF2α was conducted. In the next step these proteins were prepared in prokaryotic system formed by E. coli BL-21(DE3). The final sample of HRI (7,7 μM in total volume 400 µl and 60 % of homogenity) and the final sample of eIF2α (51,3 μM in total volume 400 µl and 80 % of homogenity) were obtained by the purification process. The study of thermal stability of these samples provided important informations on appropiate storage and manipulation with them in further experiments. Key words: heme-base sensors, heme, kinase, tranduction of signal, isolation of plasmids, prokaryotic expresion,...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.