National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Safe Cryptography Algorithms
Mahdal, Jakub ; Hanáček, Petr (referee) ; Chmelař, Petr (advisor)
This thesis brings a reader an overview about historical and modern world of cryptographic methods, as well evaluates actual state of cryptographic algorithm progressions, which are used in applications nowadays. The aim of the work describes common symmetric, asymmetric encryption methods, cryptographic hash functions and as well pseudorandom number generators, authentication protocols and protocols for building VPNs. This document also shows the basics of the successful modern cryptanalysis and reveals algorithms that shouldn't be used and which algorithms are vulnerable. The reader will be also recommended an overview of cryptographic algorithms that are expected to stay safe in the future.
Smartcard authentication
Juras, Stanislav ; Burda, Karel (referee) ; Hajný, Jan (advisor)
The master’s thesis outlines the problem of authentication. It describes authentication factors like ownership, knowledge and inherent. There are described properties of each of that. Authentication based on ownership focuses on authenticators - the smartcards. The thesis also describes different types of smartcards (contact, contactless and hybrid smartcards) and refers to their basic properties. Emphasis is placed on the description of contact and contactless smartcard, specifically focusing on .NET smartcards. It describes their internal components such as memory (RAM, ROM, EEPROM), crypto processor etc. Smartcards are also examined in terms of support for cryptographic primitives. The thesis also introduces the cryptographic methods and principles describing symmetric and asymmetric ciphers. Symmetric ciphers are divided in to stream and block ciphers. There is description of asymmetric cipher, digital signature etc. This work also touches on the fundamental principles required for safe programming. Part of this work is also practical implementation (programs). Practical part aims to implement the communication between the user and AC (Access Control) AASR system. The first suite of applications provides encrypted communication between the PC and smartcards. These applications should create on smartcard services that will be able to perform operations on the client side, which are necessary to authenticate in the AASR system. The paper also presents algorithms for working with big numbers - addition, subtraction, multiplication, and Montgomery's algorithm for multiplication. The second application implements the functionality of AC components (Access Control). This functionality is for example – authenticate received token, digital signature authentication, generating random numbers, logging etc.
Lightweight Cryptography
Šalda, Jakub ; Palovský, Radomír (advisor) ; Ivánek, Jiří (referee)
In the bachelor thesis Lightweight cryptography I describe the basics of light cryptography, analyze and compare selected lightweight symmetric ciphers. Lightweight is about trade-off between low-cost, security and performace. There are many lightweight ciphers designes, therefore I chose nad explored some of those from the point of view of their features, hardware implementation, performance and security. Analyzed ciphers are in total of fifteen and include E0, A5/1, GRAIN, Trivium, LED, SKINNY, RECTANGLE, SPARX, mCrypton, PRESENT, SIMON and SPECK, XTEA, SEA, LBlock and CLEFIA. I have come to the conclusion that the stream cipher GRAIN is very fast and safe. Block ciphers LED and SKINNY are well secured and SIMON and PRESENT hardware-efficient. With the increased use of constrained devices, it is also necessary to keep up with security, so lightweight cryptography could have a great future ahead.
Safe Cryptography Algorithms
Mahdal, Jakub ; Hanáček, Petr (referee) ; Chmelař, Petr (advisor)
This thesis brings a reader an overview about historical and modern world of cryptographic methods, as well evaluates actual state of cryptographic algorithm progressions, which are used in applications nowadays. The aim of the work describes common symmetric, asymmetric encryption methods, cryptographic hash functions and as well pseudorandom number generators, authentication protocols and protocols for building VPNs. This document also shows the basics of the successful modern cryptanalysis and reveals algorithms that shouldn't be used and which algorithms are vulnerable. The reader will be also recommended an overview of cryptographic algorithms that are expected to stay safe in the future.
Smartcard authentication
Juras, Stanislav ; Burda, Karel (referee) ; Hajný, Jan (advisor)
The master’s thesis outlines the problem of authentication. It describes authentication factors like ownership, knowledge and inherent. There are described properties of each of that. Authentication based on ownership focuses on authenticators - the smartcards. The thesis also describes different types of smartcards (contact, contactless and hybrid smartcards) and refers to their basic properties. Emphasis is placed on the description of contact and contactless smartcard, specifically focusing on .NET smartcards. It describes their internal components such as memory (RAM, ROM, EEPROM), crypto processor etc. Smartcards are also examined in terms of support for cryptographic primitives. The thesis also introduces the cryptographic methods and principles describing symmetric and asymmetric ciphers. Symmetric ciphers are divided in to stream and block ciphers. There is description of asymmetric cipher, digital signature etc. This work also touches on the fundamental principles required for safe programming. Part of this work is also practical implementation (programs). Practical part aims to implement the communication between the user and AC (Access Control) AASR system. The first suite of applications provides encrypted communication between the PC and smartcards. These applications should create on smartcard services that will be able to perform operations on the client side, which are necessary to authenticate in the AASR system. The paper also presents algorithms for working with big numbers - addition, subtraction, multiplication, and Montgomery's algorithm for multiplication. The second application implements the functionality of AC components (Access Control). This functionality is for example – authenticate received token, digital signature authentication, generating random numbers, logging etc.
Support of cryptographic algorithms in Java libraries
Jírů, Michaela ; Pavlíčková, Jarmila (advisor) ; Kutišová, Magda (referee)
This thesis is focused on encryption with Java libraries. Goal si to compare the libraries in the algorithms they provide, speed of chosen algorithms, licence and documentation. The paper is dividend into two parts, the first describes history and present of cryptography and the second is focused on work with cryptography in Java.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.