National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Computational Modelling of Self- oscillations of the Human Vocal Folds
Hájek, Petr ; Šidlof,, Petr (referee) ; Radolf, Vojtěch (referee) ; Švancara, Pavel (advisor)
The presented dissertation thesis deals with a simulation of the human phonation in terms of latest theories. Phonation is considered here as a bi-directional fluid-structure-acoustic interaction, where the interaction between all three physical domains occurs due to the unsteady viscous compressible Navier-Stokes equations. There is a solid knowledge background in the first part of the thesis. It concerns the latest concepts in computational modeling of the human phonation, the most important and recent theories about the human voice production and some key aspects of the human anatomy, physiology and pathology. Also voice assessment is discussed. The second part of the thesis describes an in-depth analysis of a phonation simulation in a planar computational model. The basic concepts proceed from algorithms developed in the Institute of Solid Mechanics, Mechatronics and Biomechanics. Created models are able to reproduce sounds of all Czech vowels and the most common evaluated parameters very close to physiological ranges. The simulated pathology, Reinke's edema, is demonstrated in order to explore its influence on the vowel sound. The third part focuses on modeling of phonation in a spatial computational model. All Czech vowels are simulated also here and compared to the planar model and to actual measurement. The spatial model serves as the starting point to modeling of a longitudinal pretension incorporated in the vocal folds. In the last part of the thesis, a modeling of the phonation with vocal folds pretension is investigated. Although the models are tuned to a rather soft phonation, the results are in agreement with the relevant physiologic phenomena. While the spatial model is highly computationally expensive, a hybrid planar model with pretension is proposed. A special attention is paid to the analysis of self-sustained oscillation of the vocal folds. It is shown, the planar model cannot reproduce such kind of oscillation in the actual version, albeit time of oscillation was considerably extended. On the other hand, oscillation of the spatial vocal folds are stabilized without effects accompanying subduing of oscillation. It can be supposed that the spatial model is able to reproduce self-sustained oscillation as a basic principle present during the human phonation.
Study of Inertial Particle Separator in a typical turboprop engine
Skála, Adam ; Doupník, Petr (referee) ; Popela, Robert (advisor)
This thesis focuses on ingestion of foreign objects into standard turboprop engine GE H80 situated in aircraft Let L-410 Turbolet. Aim of this study is to create methodology of numerical simulation of particle movement inside the engine, which could be used during design process of Inertial Particle Separator device. Thesis consists of backward-facing step benchmark study which validates used methodology. Second part describes flow field calculation and numerical setup. The last part is dedicated to particle tracking analysis. Simulated trajectories are visually investigated, and coordinates of particle impacts at 1st rotor of a compressor are correlated to position of real observed damage.
Numerical Solution of the Three-dimensional Compressible Flow
Kyncl, Martin ; Felcman, Jiří (advisor) ; Dolejší, Vít (referee) ; Brandner, Marek (referee)
Title: Numerical Solution of the Three-dimensional Compressible Flow Author: Martin Kyncl Department: Department of Numerical Mathematics Supervisor: Doc. RNDr. Jiří Felcman, CSc. Abstract: This thesis deals with a fluid flow in 3D in general. The system of the equations, describing the compressible gas flow, is solved numerically, with the aid of the finite volume method. The main purpose is to describe particular boundary conditions, based on the analysis of the incomplete Riemann problem. The analysis of the original initial-value problem shows, that the right hand-side initial condition, forming the Riemann problem, can be partially replaced by the suitable complementary condition. Several modifications of the Riemann problem are introduced and analyzed, as an original result of this work. Algorithms to solve such problems were implemented and used in code for the solution of the compressible gas flow. Numerical experiments documenting the suggested methods are performed. Keywords: compressible fluid flow, the Navier-Stokes equations, the Euler equations, boundary conditions, finite volume method, the Riemann problem, numerical flux, tur- bulent flow
Computational Modelling of Self- oscillations of the Human Vocal Folds
Hájek, Petr ; Šidlof,, Petr (referee) ; Radolf, Vojtěch (referee) ; Švancara, Pavel (advisor)
The presented dissertation thesis deals with a simulation of the human phonation in terms of latest theories. Phonation is considered here as a bi-directional fluid-structure-acoustic interaction, where the interaction between all three physical domains occurs due to the unsteady viscous compressible Navier-Stokes equations. There is a solid knowledge background in the first part of the thesis. It concerns the latest concepts in computational modeling of the human phonation, the most important and recent theories about the human voice production and some key aspects of the human anatomy, physiology and pathology. Also voice assessment is discussed. The second part of the thesis describes an in-depth analysis of a phonation simulation in a planar computational model. The basic concepts proceed from algorithms developed in the Institute of Solid Mechanics, Mechatronics and Biomechanics. Created models are able to reproduce sounds of all Czech vowels and the most common evaluated parameters very close to physiological ranges. The simulated pathology, Reinke's edema, is demonstrated in order to explore its influence on the vowel sound. The third part focuses on modeling of phonation in a spatial computational model. All Czech vowels are simulated also here and compared to the planar model and to actual measurement. The spatial model serves as the starting point to modeling of a longitudinal pretension incorporated in the vocal folds. In the last part of the thesis, a modeling of the phonation with vocal folds pretension is investigated. Although the models are tuned to a rather soft phonation, the results are in agreement with the relevant physiologic phenomena. While the spatial model is highly computationally expensive, a hybrid planar model with pretension is proposed. A special attention is paid to the analysis of self-sustained oscillation of the vocal folds. It is shown, the planar model cannot reproduce such kind of oscillation in the actual version, albeit time of oscillation was considerably extended. On the other hand, oscillation of the spatial vocal folds are stabilized without effects accompanying subduing of oscillation. It can be supposed that the spatial model is able to reproduce self-sustained oscillation as a basic principle present during the human phonation.
Study of Inertial Particle Separator in a typical turboprop engine
Skála, Adam ; Doupník, Petr (referee) ; Popela, Robert (advisor)
This thesis focuses on ingestion of foreign objects into standard turboprop engine GE H80 situated in aircraft Let L-410 Turbolet. Aim of this study is to create methodology of numerical simulation of particle movement inside the engine, which could be used during design process of Inertial Particle Separator device. Thesis consists of backward-facing step benchmark study which validates used methodology. Second part describes flow field calculation and numerical setup. The last part is dedicated to particle tracking analysis. Simulated trajectories are visually investigated, and coordinates of particle impacts at 1st rotor of a compressor are correlated to position of real observed damage.
Numerical Solution of the Three-dimensional Compressible Flow
Kyncl, Martin ; Felcman, Jiří (advisor) ; Dolejší, Vít (referee) ; Brandner, Marek (referee)
Title: Numerical Solution of the Three-dimensional Compressible Flow Author: Martin Kyncl Department: Department of Numerical Mathematics Supervisor: Doc. RNDr. Jiří Felcman, CSc. Abstract: This thesis deals with a fluid flow in 3D in general. The system of the equations, describing the compressible gas flow, is solved numerically, with the aid of the finite volume method. The main purpose is to describe particular boundary conditions, based on the analysis of the incomplete Riemann problem. The analysis of the original initial-value problem shows, that the right hand-side initial condition, forming the Riemann problem, can be partially replaced by the suitable complementary condition. Several modifications of the Riemann problem are introduced and analyzed, as an original result of this work. Algorithms to solve such problems were implemented and used in code for the solution of the compressible gas flow. Numerical experiments documenting the suggested methods are performed. Keywords: compressible fluid flow, the Navier-Stokes equations, the Euler equations, boundary conditions, finite volume method, the Riemann problem, numerical flux, tur- bulent flow

Interested in being notified about new results for this query?
Subscribe to the RSS feed.