National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Extension of Centrifugal Compressor Operational Stability
Růžička, Miroslav ; Třetina, Karel (referee) ; Kmoch, Petr (referee) ; Klement, Josef (advisor)
Centrifugal compressors with high pressure ratio are widely used in small aircraft turbine engines and turbocharges. At high rotational speeds they have narrow stable operating region and commonly used impellers with back swept blades are not able to ensure requested stability. In order to achieve wider stable operating region, some other anti-surge measures can be used, such as an Internal Recirculation Channel (IRC) located in compressor impeller inlet. This thesis deals with an investigation of IRC influence on centrifugal compressor operational parameters. As a first, the various recirculation channel geometry was studied by using of CFD analysis on simplified computational models. Those geometry, which indicated best results in terms of mass flow and looses in channel were used for testing on a model test device. Subsequently the same geometry was tested on real centrifugal compressor in experimental turbine engine to verify influence of IRC on compressor performance map – pressure ratio and efficiency. Simultaneously the CFD analyses of IRC with a 3D model of compressor impeller were performed and results compared with those, gained from measurement on model and compressor. In addition the measurement of flow field downstream the recirculation channel outlet slot with using of 3-hole pressure probe was performed and compared with flow velocity profiles evaluated from numerical simulations.
Velocity profile measurement downstream of swirler
Zejda, Vojtěch ; Hájek, Jiří (referee) ; Vondál, Jiří (advisor)
A burner is very important device in process furnaces that significantly affect the production of emissions during the combustion process. One of the key things in development of the modern low-NOX burners is the evaluation of flow field downstream of an axial blade swirler inside the burner. The computational fluid dynamics (CFD) is often used to predict the attributes of the flow. Predicted values should be validated with measurement. It is the reason why the velocity fields for several choosen swirlers were measured. The hot wire anemometry was choosen and the dual-sensor probe was used during the measurement. The data can be then used for CFD validation. This thesis describes procedure of measurement set-up. The experimental facility was designed according to the anemometry method. The new probe traversing system was designed, which provides desired accuracy. Five different swirlers were measured. Large data set, need for customized post-processing and control over calculation procedures lead to new software design. For each swirler the velocity profiles were gathered and the swirl numbers calculated. That final data were transferred in to graphical format. Uncertainty of measured data was calculated. Results show counter-rotating flow in some areas closed to the swirler. Some drawbacks of current measurement set-up are discussed. Based on the thesis reader can obtain the information and knowledge for consequent measurements of swirl burners velocity profiles.
CFD simulation of vortex structure in the Francis turbine draft tube at part load operating point - comparison with measurements
Neděla, Jiří ; Urban, Ondřej (referee) ; Štefan, David (advisor)
This master's thesis deals with simulation of vortex structure which is created in the draft tube of Francis turbine, at part load flow conditions. The main objective is to get the most accurate results from the calculations, using the student license of Ansys Fluent 19.1. The results from the calculations are compared with the experiment under the Francis-99 project. Mainlly in terms of dynamic properties of vortex rope – aplitude and frequency of pressure pulsations. Additionaly the time-averaged velocity profiles are compared. I used the test-case provided by NTNU – Norwegian University of Science and Technology under the Francis-99 workshop series.
CFD simulation of vortex structure in the Francis turbine draft tube at part load operating point - comparison with measurements
Neděla, Jiří ; Urban, Ondřej (referee) ; Štefan, David (advisor)
This master's thesis deals with simulation of vortex structure which is created in the draft tube of Francis turbine, at part load flow conditions. The main objective is to get the most accurate results from the calculations, using the student license of Ansys Fluent 19.1. The results from the calculations are compared with the experiment under the Francis-99 project. Mainlly in terms of dynamic properties of vortex rope – aplitude and frequency of pressure pulsations. Additionaly the time-averaged velocity profiles are compared. I used the test-case provided by NTNU – Norwegian University of Science and Technology under the Francis-99 workshop series.
Extension of Centrifugal Compressor Operational Stability
Růžička, Miroslav ; Třetina, Karel (referee) ; Kmoch, Petr (referee) ; Klement, Josef (advisor)
Centrifugal compressors with high pressure ratio are widely used in small aircraft turbine engines and turbocharges. At high rotational speeds they have narrow stable operating region and commonly used impellers with back swept blades are not able to ensure requested stability. In order to achieve wider stable operating region, some other anti-surge measures can be used, such as an Internal Recirculation Channel (IRC) located in compressor impeller inlet. This thesis deals with an investigation of IRC influence on centrifugal compressor operational parameters. As a first, the various recirculation channel geometry was studied by using of CFD analysis on simplified computational models. Those geometry, which indicated best results in terms of mass flow and looses in channel were used for testing on a model test device. Subsequently the same geometry was tested on real centrifugal compressor in experimental turbine engine to verify influence of IRC on compressor performance map – pressure ratio and efficiency. Simultaneously the CFD analyses of IRC with a 3D model of compressor impeller were performed and results compared with those, gained from measurement on model and compressor. In addition the measurement of flow field downstream the recirculation channel outlet slot with using of 3-hole pressure probe was performed and compared with flow velocity profiles evaluated from numerical simulations.
Extension of Centrifugal Compressor Operational Stability
Růžička, Miroslav ; Klement, Josef (advisor)
Centrifugal compressors with high pressure ratio are widely used in small aircraft turbine engines and turbocharges. At high rotational speeds they have narrow stable operating region and commonly used impellers with back swept blades are not able to ensure requested stability. In order to achieve wider stable operating region, some other anti-surge measures can be used, such as an Internal Recirculation Channel (IRC) located in compressor impeller inlet. This thesis deals with an investigation of IRC influence on centrifugal compressor operational parameters. As a first, the various recirculation channel geometry was studied by using of CFD analysis on simplified computational models. Those geometry, which indicated best results in terms of mass flow and looses in channel were used for testing on a model test device. Subsequently the same geometry was tested on real centrifugal compressor in experimental turbine engine to verify influence of IRC on compressor performance map – pressure ratio and efficiency. Simultaneously the CFD analyses of IRC with a 3D model of compressor impeller were performed and results compared with those, gained from measurement on model and compressor. In addition the measurement of flow field downstream the recirculation channel outlet slot with using of 3-hole pressure probe was performed and compared with flow velocity profiles evaluated from numerical simulations.
Velocity profile measurement downstream of swirler
Zejda, Vojtěch ; Hájek, Jiří (referee) ; Vondál, Jiří (advisor)
A burner is very important device in process furnaces that significantly affect the production of emissions during the combustion process. One of the key things in development of the modern low-NOX burners is the evaluation of flow field downstream of an axial blade swirler inside the burner. The computational fluid dynamics (CFD) is often used to predict the attributes of the flow. Predicted values should be validated with measurement. It is the reason why the velocity fields for several choosen swirlers were measured. The hot wire anemometry was choosen and the dual-sensor probe was used during the measurement. The data can be then used for CFD validation. This thesis describes procedure of measurement set-up. The experimental facility was designed according to the anemometry method. The new probe traversing system was designed, which provides desired accuracy. Five different swirlers were measured. Large data set, need for customized post-processing and control over calculation procedures lead to new software design. For each swirler the velocity profiles were gathered and the swirl numbers calculated. That final data were transferred in to graphical format. Uncertainty of measured data was calculated. Results show counter-rotating flow in some areas closed to the swirler. Some drawbacks of current measurement set-up are discussed. Based on the thesis reader can obtain the information and knowledge for consequent measurements of swirl burners velocity profiles.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.