National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Extremely fast sintering of advanced ceramic materials
Tan, Hua ; Chlup,, Zdeněk (referee) ; Sedláček,, Jaroslav (referee) ; Salamon, David (advisor)
Techniky rychlého slinování jako „Spark Plasma Sintering (SPS)“, „Flash Sintering“ (FS), „Selective Laser Sintering“ (SLS), „Induction Sintering“ (IS) a „Microwave Sintering“ (MS) jsou navrženy tak, aby účinně a předvídatelně kontrolovaly mikrostrukturu během slinovací proces. Spark Plasma Sintering jako jedna z nejmodernějších technik rychlého slinování a byla studována po celá desetiletí. V SPS má tři hlavní rysy: přímý ohřev elektrickým proudem, pulzní stejnosměrný elektrický proud a mechanický tlak. Mechanismy působení faktorů během SPS procesu však nejsou zatím jasně objasněny. Tato práce byla inspirována zvýšeným zájmem o techniky rychlého slinování a snahou o objasnění působení hlavních faktorů. Tato studie je rozdělena do čtyř částí: efekt elektromagnetického pole, efekt pulzního vzoru, tlakový efekt a přímý Joulův ohřev. Výsledky ukázaly, že elektromagnetické pole v SPS může být ignorováno, jak ukázaly simulace, a rovněž během experimentů nebyl nalezen žádný „efekt pole“. Na druhou stranu účinek pulzního vzoru byl významný, prášek TiO2 byl slinován pulzními vzory 12:2 a 10:9 s konstantním příkonem. Po aplikaci pulzního vzoru 10:9 došlo ke zvýšení velikosti zrna o jeden řád a ke zvýšení hustoty o 8%, zatímco množství spotřebované energie zůstalo konstantní. Při zahřátí s různými vzory pulzů se mění účinný výkon a kontaktní odpor indukovaný mechanickým pulsem, což jsou dva hlavní důvody, které vysvětlují měnící se energetickou účinnost. Vliv tlaku byl také významný, výsledky ukázaly, že použití tlaku při 900 ° C přineslo vysokou hustotu a malou velikost zrn, což vedlo k nejvyšší tvrdosti měřenou podle Vickerse. Interakce mezi tlakem a parami, vedoucí k rozdílné rychlosti přenosu páry v prvním slinovacím stupni, je považována za důvod pro rozdíly v mikrostruktuře, jako jsou mikropóry. Načasování mechanického tlaku může také podporovat difúzní mechanismy zhutňování během druhého slinovacího stupně, jako je difúze na hranicích zrn a mřížková difúze. Přímý ohřev, kdy se vede elektrický proud přímo skrz vzorek, vede k nízké měřené teplotě při slinování karbidu boru a jeho kompozitů, avšak teplota uvnitř vzorku je podstatně vyšší. Přidání slitiny titanu a křemíku do B4C významně zvýšilo finální hustotu, což byl hlavní důvod ovlivnění mechanických vlastností. Vzorek B4C + 1.0Ti (1 obj. % Ti slitiny) dosáhl nejvyšší tvrdosti 3628.5 ± 452.6 HV1 (16.2% vyšší než čistý B4C) s lomovou houževnatostí 2.11 ± 0.25 MPa m0.5. Zatímco při dopování křemíkem dosáhl vzorek B4C + 0.5Si (0.5 obj. % křemíku) nejvyšší tvrdosti 3524.6 ± 207.8 HV1 (o 13.0% vyšší než čistý B4C), vzorek B4C + 1.0Si dosáhl nejvyšší lomové houževnatosti 2.97 ± 0.03 MPa m0.5 (o 15.6% vyšší než čistý B4C). Velikost zrn kompozitů dotovaných titanem se oproti čistému karbidu boru byla o něco větší a mikrostruktura více nehomogenní. Naproti tomu se velikost zrn vzorků dotovaných křemíkem příliš nezměnila ve srovnání s velikostí zrn čistého karbidu boru. Sekundární fáze karbid křemíku byla dobře spojena s matricí karbidu boru a vykazovala pozitivní účinek jak na tvrdost, tak na lomovou houževnatost. Tato práce zkoumala vliv různých kontroverzních a nepopsaných aspektů na slinování keramických materiálů metodou Spark Plasma Sintering, což vedlo k lepšímu pochopení této techniky slinování.
Fast sintering of advanced ceramic materials
Prajzler, Vladimír ; Salamon, David (referee) ; Maca, Karel (advisor)
The bachelor thesis is dealing with fast sintering of advanced ceramic materials, such as tetragonal zirconia and alumina in conventional resistance furnace. This approach is made possible by special superkanthal furnace, which is capable to reach a heating rate of 200 °C/min. Samples obtained through fast sintering reached relative density higher than 93% for zirkonia and 97% for alumina, without forming any cracks in samples. Achieved relative density in the case of tetragonal zirconia was higher for samples with larger pores in the green body. This behavior is different of conventional sintering and leads to considerations of heat transfer mainly by radiation.
The microstructure evaluation of advanced oxide ceramics during fast sintering
Prajzler, Vladimír ; Chlup, Zdeněk (referee) ; Maca, Karel (advisor)
The diploma thesis deals with influence of fast pressure-less sintering on the microstructure of advanced ceramic materials, namely -Al2O3 and tetragonal ZrO2 (doped by 3 mol% Y2O3) with particle sizes ranging from 60 nm to 270 nm. Fast and controlled heating rate was enabled by utilization of the special superkanthal furnace with moving sample holder. Defect-free bulk and dense samples were prepared using heating rates in order of 100-200 °C/min. Higher densities reached the samples pressed by higher pressures; the specimens with densities higher than 99 % t.d. were prepared within tens of minutes for alumina as well as for zirconia with very low thermal conductivity. Different behavior was observed only for material TZ-3Y, which exhibited core-shell structure with dense surface and porous centre after sintering at heating rates higher than 10 °C/min. It was shown in this work that such behavior was not primarily caused by the high thermal gradient resulting from high heating rates. Its creation was probably caused by chlorine impurities. The mechanism of desintering of these samples was described and eliminated by calcination of the samples at 1000 °C for 10 hours prior to fast sintering at 1500 °C, so even this material could be fast sintered up to 99.9 % theoretical density.
Tailoring of microstructure of advanced ceramic materials by conventional and non-conventional sintering approaches
Prajzler, Vladimír ; Bermejo, Raúl (referee) ; Bača,, Ľuboš (referee) ; Maca, Karel (advisor)
Tato doktorská práce se zabývala mikrostrukturálním vývojem vybraných oxidových keramických materiálů během konvenčního slinování (CS), rychlého slinování (RRS), flash slinování (FS) a slinování pomocí plazmatu (SPS). S ohledem na keramiku pro strukturální aplikace byly pomocí RRS připraveny relativně velké (1 cm3), bez defektní a téměř hutné pelety oxidu hlinitého a yttriem stabilizovaného oxidu zirkoničitého (YSZ) s homogenní mikrostrukturou. RRS bylo také shledáno jako optimální metoda pro přípravu vysoce hutné bezolovnaté piezoelektrické keramiky s podobnými vlastnostmi, jako byly získány po časově a energeticky náročnějším CS. Metoda SPS dále zlepšila vlastnosti bezolovnaté piezoelektrické keramiky a produkovala plně hutné vzorky, což je dobrým předpokladem pro translucenci a z níž vyplývajícím optoelektrickým vlastnostem. Nejoptimálnějších výsledků – plné hustoty a vysokých piezoelektrických vlastností – bylo dosaženo kombinací SPS a RRS. Analýzy provedené v této studii také poukázaly na důležitost eliminace těkavých nečistot před rychlým ohřevem. Jinak totiž dochází k zachycení těchto látek ve slinuté keramice, což ve výsledku limituje její konečnou hustotu. Ukázalo se, že nízké konečné hustoty RRS YSZ jsou spojeny se zachycením zbytkového chloru pocházejícího ze syntézy prášku. Pokud byl zbytkový chlor odstraněn vysokoteplotním žíháním keramických kompaktů před zahájením RRS, byly touto metodou získány téměř plně hutné YZS vzorky. Negativní vliv zbytkového chloru na zhutnění byl viditelný také u flash slinovaných YSZ vzorků. Navíc FS YSZ často vede ke zrychlení růstu zrn v jádře vzorku, v důsledku vyšší teploty a elektrochemické redukce. Ve spektru procesních parametrů použitých v rámci této práce dokonce došlo k abnormálnímu růstu zrna (AGG). Silně bimodální distribuce velikosti zrn ukázaná v této práci nebyla dříve nalezena u flash slinutého YSZ. AGG byl vysvětlen dvěma přispívajícími faktory – relativně velkou velikostí vzorku, která vedla k lokalizaci elektrického proudu a vzniku horkých míst (z angl. hot-spots), a celkově akcelerovanou kinetikou růstu zrn v jádře vzorku způsobenou elektrochemickou redukcí.
Tailoring of microstructure of advanced ceramic materials by conventional and non-conventional sintering approaches
Prajzler, Vladimír ; Bermejo, Raúl (referee) ; Bača,, Ľuboš (referee) ; Maca, Karel (advisor)
Tato doktorská práce se zabývala mikrostrukturálním vývojem vybraných oxidových keramických materiálů během konvenčního slinování (CS), rychlého slinování (RRS), flash slinování (FS) a slinování pomocí plazmatu (SPS). S ohledem na keramiku pro strukturální aplikace byly pomocí RRS připraveny relativně velké (1 cm3), bez defektní a téměř hutné pelety oxidu hlinitého a yttriem stabilizovaného oxidu zirkoničitého (YSZ) s homogenní mikrostrukturou. RRS bylo také shledáno jako optimální metoda pro přípravu vysoce hutné bezolovnaté piezoelektrické keramiky s podobnými vlastnostmi, jako byly získány po časově a energeticky náročnějším CS. Metoda SPS dále zlepšila vlastnosti bezolovnaté piezoelektrické keramiky a produkovala plně hutné vzorky, což je dobrým předpokladem pro translucenci a z níž vyplývajícím optoelektrickým vlastnostem. Nejoptimálnějších výsledků – plné hustoty a vysokých piezoelektrických vlastností – bylo dosaženo kombinací SPS a RRS. Analýzy provedené v této studii také poukázaly na důležitost eliminace těkavých nečistot před rychlým ohřevem. Jinak totiž dochází k zachycení těchto látek ve slinuté keramice, což ve výsledku limituje její konečnou hustotu. Ukázalo se, že nízké konečné hustoty RRS YSZ jsou spojeny se zachycením zbytkového chloru pocházejícího ze syntézy prášku. Pokud byl zbytkový chlor odstraněn vysokoteplotním žíháním keramických kompaktů před zahájením RRS, byly touto metodou získány téměř plně hutné YZS vzorky. Negativní vliv zbytkového chloru na zhutnění byl viditelný také u flash slinovaných YSZ vzorků. Navíc FS YSZ často vede ke zrychlení růstu zrn v jádře vzorku, v důsledku vyšší teploty a elektrochemické redukce. Ve spektru procesních parametrů použitých v rámci této práce dokonce došlo k abnormálnímu růstu zrna (AGG). Silně bimodální distribuce velikosti zrn ukázaná v této práci nebyla dříve nalezena u flash slinutého YSZ. AGG byl vysvětlen dvěma přispívajícími faktory – relativně velkou velikostí vzorku, která vedla k lokalizaci elektrického proudu a vzniku horkých míst (z angl. hot-spots), a celkově akcelerovanou kinetikou růstu zrn v jádře vzorku způsobenou elektrochemickou redukcí.
Extremely fast sintering of advanced ceramic materials
Tan, Hua ; Chlup,, Zdeněk (referee) ; Sedláček,, Jaroslav (referee) ; Salamon, David (advisor)
Techniky rychlého slinování jako „Spark Plasma Sintering (SPS)“, „Flash Sintering“ (FS), „Selective Laser Sintering“ (SLS), „Induction Sintering“ (IS) a „Microwave Sintering“ (MS) jsou navrženy tak, aby účinně a předvídatelně kontrolovaly mikrostrukturu během slinovací proces. Spark Plasma Sintering jako jedna z nejmodernějších technik rychlého slinování a byla studována po celá desetiletí. V SPS má tři hlavní rysy: přímý ohřev elektrickým proudem, pulzní stejnosměrný elektrický proud a mechanický tlak. Mechanismy působení faktorů během SPS procesu však nejsou zatím jasně objasněny. Tato práce byla inspirována zvýšeným zájmem o techniky rychlého slinování a snahou o objasnění působení hlavních faktorů. Tato studie je rozdělena do čtyř částí: efekt elektromagnetického pole, efekt pulzního vzoru, tlakový efekt a přímý Joulův ohřev. Výsledky ukázaly, že elektromagnetické pole v SPS může být ignorováno, jak ukázaly simulace, a rovněž během experimentů nebyl nalezen žádný „efekt pole“. Na druhou stranu účinek pulzního vzoru byl významný, prášek TiO2 byl slinován pulzními vzory 12:2 a 10:9 s konstantním příkonem. Po aplikaci pulzního vzoru 10:9 došlo ke zvýšení velikosti zrna o jeden řád a ke zvýšení hustoty o 8%, zatímco množství spotřebované energie zůstalo konstantní. Při zahřátí s různými vzory pulzů se mění účinný výkon a kontaktní odpor indukovaný mechanickým pulsem, což jsou dva hlavní důvody, které vysvětlují měnící se energetickou účinnost. Vliv tlaku byl také významný, výsledky ukázaly, že použití tlaku při 900 ° C přineslo vysokou hustotu a malou velikost zrn, což vedlo k nejvyšší tvrdosti měřenou podle Vickerse. Interakce mezi tlakem a parami, vedoucí k rozdílné rychlosti přenosu páry v prvním slinovacím stupni, je považována za důvod pro rozdíly v mikrostruktuře, jako jsou mikropóry. Načasování mechanického tlaku může také podporovat difúzní mechanismy zhutňování během druhého slinovacího stupně, jako je difúze na hranicích zrn a mřížková difúze. Přímý ohřev, kdy se vede elektrický proud přímo skrz vzorek, vede k nízké měřené teplotě při slinování karbidu boru a jeho kompozitů, avšak teplota uvnitř vzorku je podstatně vyšší. Přidání slitiny titanu a křemíku do B4C významně zvýšilo finální hustotu, což byl hlavní důvod ovlivnění mechanických vlastností. Vzorek B4C + 1.0Ti (1 obj. % Ti slitiny) dosáhl nejvyšší tvrdosti 3628.5 ± 452.6 HV1 (16.2% vyšší než čistý B4C) s lomovou houževnatostí 2.11 ± 0.25 MPa m0.5. Zatímco při dopování křemíkem dosáhl vzorek B4C + 0.5Si (0.5 obj. % křemíku) nejvyšší tvrdosti 3524.6 ± 207.8 HV1 (o 13.0% vyšší než čistý B4C), vzorek B4C + 1.0Si dosáhl nejvyšší lomové houževnatosti 2.97 ± 0.03 MPa m0.5 (o 15.6% vyšší než čistý B4C). Velikost zrn kompozitů dotovaných titanem se oproti čistému karbidu boru byla o něco větší a mikrostruktura více nehomogenní. Naproti tomu se velikost zrn vzorků dotovaných křemíkem příliš nezměnila ve srovnání s velikostí zrn čistého karbidu boru. Sekundární fáze karbid křemíku byla dobře spojena s matricí karbidu boru a vykazovala pozitivní účinek jak na tvrdost, tak na lomovou houževnatost. Tato práce zkoumala vliv různých kontroverzních a nepopsaných aspektů na slinování keramických materiálů metodou Spark Plasma Sintering, což vedlo k lepšímu pochopení této techniky slinování.
The microstructure evaluation of advanced oxide ceramics during fast sintering
Prajzler, Vladimír ; Chlup, Zdeněk (referee) ; Maca, Karel (advisor)
The diploma thesis deals with influence of fast pressure-less sintering on the microstructure of advanced ceramic materials, namely -Al2O3 and tetragonal ZrO2 (doped by 3 mol% Y2O3) with particle sizes ranging from 60 nm to 270 nm. Fast and controlled heating rate was enabled by utilization of the special superkanthal furnace with moving sample holder. Defect-free bulk and dense samples were prepared using heating rates in order of 100-200 °C/min. Higher densities reached the samples pressed by higher pressures; the specimens with densities higher than 99 % t.d. were prepared within tens of minutes for alumina as well as for zirconia with very low thermal conductivity. Different behavior was observed only for material TZ-3Y, which exhibited core-shell structure with dense surface and porous centre after sintering at heating rates higher than 10 °C/min. It was shown in this work that such behavior was not primarily caused by the high thermal gradient resulting from high heating rates. Its creation was probably caused by chlorine impurities. The mechanism of desintering of these samples was described and eliminated by calcination of the samples at 1000 °C for 10 hours prior to fast sintering at 1500 °C, so even this material could be fast sintered up to 99.9 % theoretical density.
Fast sintering of advanced ceramic materials
Prajzler, Vladimír ; Salamon, David (referee) ; Maca, Karel (advisor)
The bachelor thesis is dealing with fast sintering of advanced ceramic materials, such as tetragonal zirconia and alumina in conventional resistance furnace. This approach is made possible by special superkanthal furnace, which is capable to reach a heating rate of 200 °C/min. Samples obtained through fast sintering reached relative density higher than 93% for zirkonia and 97% for alumina, without forming any cracks in samples. Achieved relative density in the case of tetragonal zirconia was higher for samples with larger pores in the green body. This behavior is different of conventional sintering and leads to considerations of heat transfer mainly by radiation.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.