National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Controlling of Robot with Ackermann Steering
Fryč, Martin ; Žák, Marek (referee) ; Rozman, Jaroslav (advisor)
In this paper is described creation of a robot in Robot Operating system (ROS) withAckermann steering. It contains the principle of Ackermann steering geometry, search ofcontroller boards and basics of ROS structure. A RC car with connected PixHawk controlleris used as a basis of the robot. On the robot is placed an onboard computer Raspberry Pi3 with running ROS. This computer is connected to a laptop through Wi-Fi network. Theprocedure of starting up the robot and ROS is also described in this paper, as well asdesign of the graphical user interface (GUI) that will display sensory data and allow otherfunctionality. Another part of thesis explains principle of an optical encoder and how tocreate your own encoder which can detect rotation of a wheel. This is used to implementrobot odometry. The structure of ROS navigation library is analyzed with regards to itscommissioning. Implementation of the GUI and navigation library will follow in the masterthesis.
Motion Controlling of a Robotic Car by RaspberryPi and Camera
Brhel, Miroslav ; Samek, Jan (referee) ; Rozman, Jaroslav (advisor)
This Master's Thesis deals with the controlling of robotic car by Raspberry Pi and the ca- mera. Theoretical part describes individual steps of image processing and probabilistic plan- ning for searching path in the work space. In particular, algorithm RRT (Rapidly-exploring Random Tree) is discussed and the balanced bidirectional RRT is further introduced and used for nonholonomic planning in configuration space. Next chapter speaks about propo- sed solution and there is the accurate description of connection Raspberry Pi to the robotic car. Rest of the work provides look at implemetation details and evaluation. In the end, conclusion was given and some improvements were suggested.
Controlling of Robot with Ackermann Steering
Fryč, Martin ; Žák, Marek (referee) ; Rozman, Jaroslav (advisor)
In this paper is described creation of a robot in Robot Operating system (ROS) withAckermann steering. It contains the principle of Ackermann steering geometry, search ofcontroller boards and basics of ROS structure. A RC car with connected PixHawk controlleris used as a basis of the robot. On the robot is placed an onboard computer Raspberry Pi3 with running ROS. This computer is connected to a laptop through Wi-Fi network. Theprocedure of starting up the robot and ROS is also described in this paper, as well asdesign of the graphical user interface (GUI) that will display sensory data and allow otherfunctionality. Another part of thesis explains principle of an optical encoder and how tocreate your own encoder which can detect rotation of a wheel. This is used to implementrobot odometry. The structure of ROS navigation library is analyzed with regards to itscommissioning. Implementation of the GUI and navigation library will follow in the masterthesis.
Motion Controlling of a Robotic Car by RaspberryPi and Camera
Brhel, Miroslav ; Samek, Jan (referee) ; Rozman, Jaroslav (advisor)
This Master's Thesis deals with the controlling of robotic car by Raspberry Pi and the ca- mera. Theoretical part describes individual steps of image processing and probabilistic plan- ning for searching path in the work space. In particular, algorithm RRT (Rapidly-exploring Random Tree) is discussed and the balanced bidirectional RRT is further introduced and used for nonholonomic planning in configuration space. Next chapter speaks about propo- sed solution and there is the accurate description of connection Raspberry Pi to the robotic car. Rest of the work provides look at implemetation details and evaluation. In the end, conclusion was given and some improvements were suggested.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.