National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Relaxivity of magnetic iron oxide nanoparticles containing diamagnetic cations
Kubíčková, Lenka ; Kohout, Jaroslav (advisor)
Magnetic nanoparticles have received extensive attention in the biomedical research, e.g. as prospective contrast agents for T2-weighted magnetic resonance imaging. The ability of a contrast agent to enhance the relaxation rate of 1 H in its vicinity is quantified by relaxivity. The main aim of this thesis is to evaluate the transversal re- laxivity of ε-Fe2−x Alx O3 nanoparticles coated with amorphous silica or citrate - its dependence on external magnetic field, temperature and thickness of silica coating - by means of nuclear magnetic resonance. The aluminium content x = 0.23(1) was determined from XRF, the material was further characterised by XRPD, Möss- bauer spectroscopy, DLS, TEM and magnetic measurements. The size of magnetic cores was ∼ 21 nm, the thickness of silica coating ∼ 6,10,17 and 21 nm. Magne- tization of the ε-Fe2−x Alx O3 nanoparticles increased by ∼ 30 % when compared to ε-Fe2O3. The saturating dependence of relaxivity on external magnetic field and on the linear decrease with increase of thickness of silica coating contravene the theo- retical model of motional averaging regime (MAR); nevertheless, the temperature dependence acquired in 0.47 T and 11.75 T may be explained by MAR. In compari- son to ε-Fe2O3 nanoparticles, the relaxivity of examined samples was higher for par-...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.