National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Brass Corrosion Layers Reduction by Low-Pressure Low-Temperature Plasma
Řádková, Lucie ; Slavíček,, Pavel (referee) ; Zahoran,, Miroslav (referee) ; Krčma, František (advisor)
This thesis presents results of the corrosion layers removal which could be found on the archaeological artefact surfaces. The low pressure low temperature plasma reduction was used for this purpose. Brass samples were chosen for this study. Two different ways have been used to form model corrosion layers. Several sets of corrosion layers were prepared in laboratory in two different corrosion atmospheres, namely ammonia atmosphere and atmosphere of hydrochloric acid. These samples were placed into desiccator. Small quantities of sand were added to some sets of samples so samples with sandy incrustation were prepared. The corrosion layers had been usually formed during four weeks. The second way, which was used to prepare model corrosion layer, was the natural corrosion in soil or compost. In this case, the corrosion layers had been formed approximately 2 years. The samples were treated in the low pressure (150 Pa) cylindrical Quartz reactor (90 cm long and 9.5 cm in diameter) with a pair of external copper electrodes connected via the matching network to a radiofrequency generator (13.56 MHz). The flows of working gases were set by independent mass flow controllers. Whole system was continuously pumped by the rotary oil pump which was separated from the discharge reactor by liquid nitrogen trap with aluminium chips eliminating dust and reactive species from the gas flow. Each sample was placed on a glass holder at the reactor center. Plasma was generated in pure hydrogen or in mixture of hydrogen and argon. Total flow of working gas was 50 sccm. Different ratios of gas mixture were tested, the ratio 30 sccm hydrogen and 20 sccm argon flows was the best. RF discharge was used in a continuous and pulsed regime. Pulsed mode was carried out with various duty cycle at the frequency of 1000 Hz. There were two ways of temperature monitoring. The sample temperature during the treatment was monitored by a K-type thermocouple installed inside the sample in the first case. Thermometer optical probe was connected to the sample surface by a small stainless plate and allowed continuous sample temperature monitoring in the second way. Safe object temperature for copper and copper alloys is 100–120 °C. To avoid exceeding this temperature, power control or the duty cycle in pulse mode were automatically controlled if thermometer optical probe was used. Plasma chemical treatment is based on generation of reactive atomic hydrogen in plasma discharge. The main reactions during reduction were reactions between oxygen and chloride contained in the corrosion layer and the hydrogen ions and neutral atoms generated in the plasma. These reactions create an unstable OH radical, which emits light in the region of 306–312 nm. This radiation was detected by the optical emission spectroscopy using Ocean Optics HR4000 spectrometer with 2400 gr/mm grating. Data obtained from this method were used to calculate rotational temperatures and integral intensity of OH radicals that were used for the process monitoring. Corrosion layer was not completely removed during the reduction, but due to the reactions which occur in the plasma corrosion layer became brittle and after plasma chemical treatment can be removed easily. The SEM-EDS material analyses were carried out before and after treatment of some samples. Some samples were analysed by XRD analysis. EDS analysis showed that amount of oxygen and chloride was decreased, mainly at 400 W pulse mode.
Plasma chemical removal of bronze corrosion layers
Miková, Petra ; Slavíček, Pavel (referee) ; Tiňo, Jozef (referee) ; Krčma, František (advisor)
The thesis deal with applying low-pressure low-temperature plasma to corrosion products layers on bronze. Layers of corrosion products on samples were artificially prepared. As a result, they had the same composition and could be irreversibly destroyed during experiments, which would not be possible with real archeological artifacts. Bronze, copper and tin alloy, samples were cut with respect to the size of the plasma-chemical device. XRF was used to determine the bronze composition. Before being corroded by the active medium, each sample was washed with ethanol and dried with a hot air stream. Until now, the procedure was the same for all samples. During formation of corrosion products layers, two factors have to be taken into account: the time consumption and the corrosiveness of the active environment. By focusing on one or the other factor, several groups of samples with differently degraded surfaces were created. The fastest way was to place samples in a corrosion chamber where sodium chloride solution was applied at the elevated temperature. The samples were corroded within a few days there. Longer, but in terms of corrosion products layers compactness better way proved procedure where the samples were sealed in the desiccator. At the desiccator bottom the Petri dish with an inorganic acid was placed, in our case, with hydrochloric acid inside. This method corroded the samples within one month. The longest but the most closed to the real live method was the burial of samples into soil or compost. However, this method corroded the samples within two years. Final step after the samples were removed from any corrosive environment, were dried under low pressure and were placed in a barrier film made bag together with moisture and oxygen absorbers. So prepared samples with layers of corrosion products have been treated in a low-pressure low-temperature plasma. Treatment was carried out in the apparatus which is based on the reactor: cylinder of quartz glass having a diameter of 100 mm and a length of 900 mm. The reactor was supplied with a working gas or a mixture of working gases with a total flow rate of 50 sccm. In our case, one is pure hydrogen or a combination with argon. A rotary oil pump was used to provide vacuum. The reactor base pressure was 10 Pa before treatment, while during the treatment it was 150 Pa. High-frequency generator (13.54 MHz) was used for supply the system with energy through two copper electrodes located outside the reactor. According to the energy delivery method, the treatment was carried out in a continuous or pulse mode. The sample temperature was monitored during the experiment and were evaluated the emission spectra from OES. The sample temperature was one of the key factors. The measurement was first done with a thermocouple, later switched to a thermocouple with optical data transmission. A safe temperature was set and then the whole process was controlled through it. In addition, the effect of the energy delivery method, value of the delivered power, sample size, presence of incrusted layers and composition of working gas were studied. After application of plasma, samples were analyzed by SEM – EDX and XRD. After the evaluation of the acquired knowledge and experience, a real artifact - a bronze chisel from the site of Boskovice - was treated. This documentation lacked the artifact, so it could be used to verify the lessons learned about plasma chemical reduction.
Plasma chemical removal of bronze corrosion layers
Miková, Petra ; Slavíček, Pavel (referee) ; Tiňo, Jozef (referee) ; Krčma, František (advisor)
The thesis deal with applying low-pressure low-temperature plasma to corrosion products layers on bronze. Layers of corrosion products on samples were artificially prepared. As a result, they had the same composition and could be irreversibly destroyed during experiments, which would not be possible with real archeological artifacts. Bronze, copper and tin alloy, samples were cut with respect to the size of the plasma-chemical device. XRF was used to determine the bronze composition. Before being corroded by the active medium, each sample was washed with ethanol and dried with a hot air stream. Until now, the procedure was the same for all samples. During formation of corrosion products layers, two factors have to be taken into account: the time consumption and the corrosiveness of the active environment. By focusing on one or the other factor, several groups of samples with differently degraded surfaces were created. The fastest way was to place samples in a corrosion chamber where sodium chloride solution was applied at the elevated temperature. The samples were corroded within a few days there. Longer, but in terms of corrosion products layers compactness better way proved procedure where the samples were sealed in the desiccator. At the desiccator bottom the Petri dish with an inorganic acid was placed, in our case, with hydrochloric acid inside. This method corroded the samples within one month. The longest but the most closed to the real live method was the burial of samples into soil or compost. However, this method corroded the samples within two years. Final step after the samples were removed from any corrosive environment, were dried under low pressure and were placed in a barrier film made bag together with moisture and oxygen absorbers. So prepared samples with layers of corrosion products have been treated in a low-pressure low-temperature plasma. Treatment was carried out in the apparatus which is based on the reactor: cylinder of quartz glass having a diameter of 100 mm and a length of 900 mm. The reactor was supplied with a working gas or a mixture of working gases with a total flow rate of 50 sccm. In our case, one is pure hydrogen or a combination with argon. A rotary oil pump was used to provide vacuum. The reactor base pressure was 10 Pa before treatment, while during the treatment it was 150 Pa. High-frequency generator (13.54 MHz) was used for supply the system with energy through two copper electrodes located outside the reactor. According to the energy delivery method, the treatment was carried out in a continuous or pulse mode. The sample temperature was monitored during the experiment and were evaluated the emission spectra from OES. The sample temperature was one of the key factors. The measurement was first done with a thermocouple, later switched to a thermocouple with optical data transmission. A safe temperature was set and then the whole process was controlled through it. In addition, the effect of the energy delivery method, value of the delivered power, sample size, presence of incrusted layers and composition of working gas were studied. After application of plasma, samples were analyzed by SEM – EDX and XRD. After the evaluation of the acquired knowledge and experience, a real artifact - a bronze chisel from the site of Boskovice - was treated. This documentation lacked the artifact, so it could be used to verify the lessons learned about plasma chemical reduction.
Brass Corrosion Layers Reduction by Low-Pressure Low-Temperature Plasma
Řádková, Lucie ; Slavíček,, Pavel (referee) ; Zahoran,, Miroslav (referee) ; Krčma, František (advisor)
This thesis presents results of the corrosion layers removal which could be found on the archaeological artefact surfaces. The low pressure low temperature plasma reduction was used for this purpose. Brass samples were chosen for this study. Two different ways have been used to form model corrosion layers. Several sets of corrosion layers were prepared in laboratory in two different corrosion atmospheres, namely ammonia atmosphere and atmosphere of hydrochloric acid. These samples were placed into desiccator. Small quantities of sand were added to some sets of samples so samples with sandy incrustation were prepared. The corrosion layers had been usually formed during four weeks. The second way, which was used to prepare model corrosion layer, was the natural corrosion in soil or compost. In this case, the corrosion layers had been formed approximately 2 years. The samples were treated in the low pressure (150 Pa) cylindrical Quartz reactor (90 cm long and 9.5 cm in diameter) with a pair of external copper electrodes connected via the matching network to a radiofrequency generator (13.56 MHz). The flows of working gases were set by independent mass flow controllers. Whole system was continuously pumped by the rotary oil pump which was separated from the discharge reactor by liquid nitrogen trap with aluminium chips eliminating dust and reactive species from the gas flow. Each sample was placed on a glass holder at the reactor center. Plasma was generated in pure hydrogen or in mixture of hydrogen and argon. Total flow of working gas was 50 sccm. Different ratios of gas mixture were tested, the ratio 30 sccm hydrogen and 20 sccm argon flows was the best. RF discharge was used in a continuous and pulsed regime. Pulsed mode was carried out with various duty cycle at the frequency of 1000 Hz. There were two ways of temperature monitoring. The sample temperature during the treatment was monitored by a K-type thermocouple installed inside the sample in the first case. Thermometer optical probe was connected to the sample surface by a small stainless plate and allowed continuous sample temperature monitoring in the second way. Safe object temperature for copper and copper alloys is 100–120 °C. To avoid exceeding this temperature, power control or the duty cycle in pulse mode were automatically controlled if thermometer optical probe was used. Plasma chemical treatment is based on generation of reactive atomic hydrogen in plasma discharge. The main reactions during reduction were reactions between oxygen and chloride contained in the corrosion layer and the hydrogen ions and neutral atoms generated in the plasma. These reactions create an unstable OH radical, which emits light in the region of 306–312 nm. This radiation was detected by the optical emission spectroscopy using Ocean Optics HR4000 spectrometer with 2400 gr/mm grating. Data obtained from this method were used to calculate rotational temperatures and integral intensity of OH radicals that were used for the process monitoring. Corrosion layer was not completely removed during the reduction, but due to the reactions which occur in the plasma corrosion layer became brittle and after plasma chemical treatment can be removed easily. The SEM-EDS material analyses were carried out before and after treatment of some samples. Some samples were analysed by XRD analysis. EDS analysis showed that amount of oxygen and chloride was decreased, mainly at 400 W pulse mode.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.