National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Stainless steels for cryogenic applications processed by 3D printing
Grygar, Filip ; Hutař, Pavel (referee) ; Koutný, Daniel (advisor)
This thesis deals with properties of austenitic stainless steel 304L processed by SLM technology and tested at room and cryogenics temperatures. Result is description of mechanical properties and microstructure. First step was to develop processing parameters to achieve porosity of prints fell below 0,01 %. Following tensile test showed higher yield and ultimate tensile strength than conventionally fabricated parts, even at temperature -80 °C, but at cost of reduced ductility. Due to deformation and low temperature austenite transformed into martensite. This transformation also occurred in Charpy toughness test, that resulted in ductile to brittle behaviour.
Stainless steels for cryogenic applications processed by 3D printing
Grygar, Filip ; Hutař, Pavel (referee) ; Koutný, Daniel (advisor)
This thesis deals with properties of austenitic stainless steel 304L processed by SLM technology and tested at room and cryogenics temperatures. Result is description of mechanical properties and microstructure. First step was to develop processing parameters to achieve porosity of prints fell below 0,01 %. Following tensile test showed higher yield and ultimate tensile strength than conventionally fabricated parts, even at temperature -80 °C, but at cost of reduced ductility. Due to deformation and low temperature austenite transformed into martensite. This transformation also occurred in Charpy toughness test, that resulted in ductile to brittle behaviour.
METALLURGY AND PROPERTIES OF ADVANCED NiAl-Mo EUTECTICS
Barták, Tomáš ; Kuchařová, Květa ; Záležák, Tomáš ; Dlouhý, Antonín
A NiAl-Mo eutectic alloy was melt from 99,99% purity components and cast by the drop casting technique. The drop-cast ternary alloy (nominal composition of Ni-45Al-9Mo at. %), was re-melted and directionally solidified using a high temperature optical floating zone furnace. A resulting in-situ composite consists of Ni-45,2Al matrix and Mo-10Al-4Ni fibers, all in at. %. The volume fraction of 14% Mo-fibers stems from the eutectic composition. Spacing and a diameter of Mo-fibers can be controlled within certain limits using different growth rates of the crystals. Microstructural parameters of the as-cast crystals were assessed by light microscopy, scanning and transmission electron microscopy. Backscatter diffraction shows that the NiAl-matrix and the Mo-fibers are both < 001 >-oriented with respect to the axis of the cylindrical rods. Preliminary creep experiments confirmed an immense improvement of high temperature strength due to the fine distribution of Mo-fibres. The amount of strengthening in terms of minimum creep rate can be as high as 7 orders of magnitude. Post-mortem transmission electron microscopy experiments provided evidence that creep in the temperature range of 800-900 degrees C results in an extensive formation of subgrain boundaries. The strengthening effect is very likely associated with the reactions between subgrain boundaries and fine Mo-fibres.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.