National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Pyroelectric conversion and pyroelectric generators
Kaše, Jakub ; Pospíšil, Jiří (referee) ; Brázdil, Marian (advisor)
Presented bachelor thesis deals with pyroelectric conversion and pyroelectric generator applications. The principle of pyroelectric phenomenon and its origin in materials are described and known materials exhibiting significant pyroelectric properties are compared. Furthermore, pyroelectric generator constructions are presented and compared, an overview of implemented pyroelectric devices is created and possible future applications of pyroelectric generators are described. Following this, a comparison of pyroelectric conversion to alternative conversion methods is made and pyroelectric generators’ potential is evaluated with special focus on waste heat utilization. Current pyroelectric devices are able to reach thermal to electric conversion efficiency of 1,3 % or power density of 120 W/m2 while powered by a heat source with maximum temperature of 250 °C or lower. With regard to these results, this technology is potentially useable and further development and applications can be predicted in the future.
Pyroelectric conversion and pyroelectric generators
Kaše, Jakub ; Pospíšil, Jiří (referee) ; Brázdil, Marian (advisor)
Presented bachelor thesis deals with pyroelectric conversion and pyroelectric generator applications. The principle of pyroelectric phenomenon and its origin in materials are described and known materials exhibiting significant pyroelectric properties are compared. Furthermore, pyroelectric generator constructions are presented and compared, an overview of implemented pyroelectric devices is created and possible future applications of pyroelectric generators are described. Following this, a comparison of pyroelectric conversion to alternative conversion methods is made and pyroelectric generators’ potential is evaluated with special focus on waste heat utilization. Current pyroelectric devices are able to reach thermal to electric conversion efficiency of 1,3 % or power density of 120 W/m2 while powered by a heat source with maximum temperature of 250 °C or lower. With regard to these results, this technology is potentially useable and further development and applications can be predicted in the future.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.