National Repository of Grey Literature 8 records found  Search took 0.02 seconds. 
Antennas for energy transmission along the car roof
Škoda, Adam ; Hebelka, Vladimír (referee) ; Vélim, Jan (advisor)
The presented master’s thesis deals with antennas transmitting energy along conductive materials. Surface waves are used for energy transmission. According to its properties, the horn antenna was chosen for the problem solution. This thesis includes the theoretical analysis of surface waves, waveguides and horn antennas. The concept of antennas includes the comparison of two different materials and two different frequencies. From the set of 8GHz antennas, the structure of two antennas where one wearing the other was chosen as the most suitable. The FoamClad material was also selected due to achievement of better parameters and properties then material CuClad. This structure was designed by two identical horn antennas where the energy between them is transmitted via slot. The suitable feeding and parallel plates were designed, and further the current structure was modified to SIW structure. The designed antenna was manufactured and its properties were measured for further comparison with simulation results. Furthermore, achieved differences between simulated and real antenna are discussed.
The propagation of the open surface waves
Kajánková, Dominika ; Haluza, Miloslav (referee) ; Fialová, Simona (advisor)
Water covers majority of planet, waves, forming on its surface, are without any doubt part of it. The aim of this work is to make you familiar with types of waves at the free surface, how they propagate and how can we prevent their propagation.
Surface Wave Analysis and Inversion-Application to the Bohemian Massif
Kolínský, Petr ; Prokop Brokešová, Johana (advisor) ; Novotný, Oldřich (referee) ; Růžek, Bohuslav (referee)
title: Surface Wave Analysis and Inversion Application to the Bohemian Massif author: Mgr. Petr Kolínský, DiS. author's e-mail address: kolinsky@irsm.cas.cz departments: Department of Geophysics Faculty of Mathematics and Physics Charles University Prague V Holešovičkách 2, Praha 8 - 180 00, Czech Republic and Department of Seismology Institute of Rock Structure and Mechanics, v.v.i. Academy of Sciences of the Czech Republic V Holešovičkách 41, Praha 8 - 182 09, Czech Republic supervisor: RNDr. Johana Brokešová, CSc. supervisor's e-mail address: johana.brokesova@mff.cuni.cz consultant: RNDr. Jiří Málek, PhD. consultant's e-mail address: malek@irsm.cas.cz keywords: surface waves, group velocity, phase velocity, frequency-time analysis, multiple filtering, tomography, inversion problems, Earth crust structure, Bohemian Massif An overview of surface wave analysis methods as well as of inversion techniques is given. Special attention is paid to the multiple filtering method for dispersion curve estimation, which is described by two different ways in detail. The isometric method is used for dispersion curve inversion and its description and tests are presented. Described methods are further used in applications. The applications show examples of surface wave analysis and inversion for 1D and 2D...
The propagation of the open surface waves
Kajánková, Dominika ; Haluza, Miloslav (referee) ; Fialová, Simona (advisor)
Water covers majority of planet, waves, forming on its surface, are without any doubt part of it. The aim of this work is to make you familiar with types of waves at the free surface, how they propagate and how can we prevent their propagation.
Analysis of rupture velocity for selected earthquakes utilizing regional recordings of surface waves
Čejka, František ; Gallovič, František (advisor) ; Zahradník, Jiří (referee)
Supershear earthquake is an interesting phenomena that is still without a robust method for its proving. In 2012 Vallée and Dunham (2012) published a method that studied far-field waveforms from supershear earthquakes. They conclude that unilateral supershear ruptures have similar shape of surface waves on the border of Mach cone as surface waves of smaller earthquake with the similar mechanism and location. In this work we use their method and we developed a script in Python with use of ObsPy library. Our script is capable of downloading and processing data from worldwide seismic databases like IRIS. We tested our program on a supershear earthquake in 2001, Kokoxili, China, which was studied in the original paper. Our results were the same as the original one. Then we use our script to other potential supershear earthquakes: Denali 2002, Yushu 2010 and Aegean sea 2014 to test the method and its results. We conclude that this method is relatively stable for large earthquakes like Kokoxili where we have a big difference between the main shock and the small one. For smaller events there could be a problem with seismic noise and proper setting of frequention.
Application and interpretation of seismic surface waves in broad frequency range
Gaždová, Renata ; Vilhelm, Jan (advisor) ; Novotný, Oldřich (referee) ; Holub, Karel (referee)
Submitted Ph.D. thesis is concerning the application and interpretation of seismic surface waves in a broad range of frequencies and scales. Using surface waves as a supplement to the methods dealing with body waves seems to be worth the effort. Surface wave interpretation can be used to obtain new information about the studied medium and simultaneously it can overcome, in some cases, the limitations of other seismic techniques. Moreover, surface waves are usually present on measured records and hence for its usage it is not necessary to modify the standard measuring procedures. One of the results of this thesis is an original algorithm for dispersive waveform calculation. The program works in an arbitrary range of frequencies and scales. The input parameter for the calculation is the dispersion curve. In this point the algorithm differs from all other approaches used so far. Algorithm is based on a summation of frequency components with shifts corresponding to the velocity dispersion and distance. The resulting waveform only contains an individual dispersive wave of the selected mode, thus being particularly suitable for testing of methodologies for dispersive wave analysis. The algorithm was implemented into the program DISECA. Furthermore, a new procedure was designed to calculate the dispersion...
Surface Wave Analysis and Inversion-Application to the Bohemian Massif
Kolínský, Petr ; Prokop Brokešová, Johana (advisor) ; Novotný, Oldřich (referee) ; Růžek, Bohuslav (referee)
title: Surface Wave Analysis and Inversion Application to the Bohemian Massif author: Mgr. Petr Kolínský, DiS. author's e-mail address: kolinsky@irsm.cas.cz departments: Department of Geophysics Faculty of Mathematics and Physics Charles University Prague V Holešovičkách 2, Praha 8 - 180 00, Czech Republic and Department of Seismology Institute of Rock Structure and Mechanics, v.v.i. Academy of Sciences of the Czech Republic V Holešovičkách 41, Praha 8 - 182 09, Czech Republic supervisor: RNDr. Johana Brokešová, CSc. supervisor's e-mail address: johana.brokesova@mff.cuni.cz consultant: RNDr. Jiří Málek, PhD. consultant's e-mail address: malek@irsm.cas.cz keywords: surface waves, group velocity, phase velocity, frequency-time analysis, multiple filtering, tomography, inversion problems, Earth crust structure, Bohemian Massif An overview of surface wave analysis methods as well as of inversion techniques is given. Special attention is paid to the multiple filtering method for dispersion curve estimation, which is described by two different ways in detail. The isometric method is used for dispersion curve inversion and its description and tests are presented. Described methods are further used in applications. The applications show examples of surface wave analysis and inversion for 1D and 2D...
Antennas for energy transmission along the car roof
Škoda, Adam ; Hebelka, Vladimír (referee) ; Vélim, Jan (advisor)
The presented master’s thesis deals with antennas transmitting energy along conductive materials. Surface waves are used for energy transmission. According to its properties, the horn antenna was chosen for the problem solution. This thesis includes the theoretical analysis of surface waves, waveguides and horn antennas. The concept of antennas includes the comparison of two different materials and two different frequencies. From the set of 8GHz antennas, the structure of two antennas where one wearing the other was chosen as the most suitable. The FoamClad material was also selected due to achievement of better parameters and properties then material CuClad. This structure was designed by two identical horn antennas where the energy between them is transmitted via slot. The suitable feeding and parallel plates were designed, and further the current structure was modified to SIW structure. The designed antenna was manufactured and its properties were measured for further comparison with simulation results. Furthermore, achieved differences between simulated and real antenna are discussed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.