National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Release of active substances from porous structures based on poly(3-hydroxybutyrate) (PHB)
Černeková, Nicole ; Veselá, Mária (referee) ; Kovalčík, Adriána (advisor)
This bachelor thesis deals with the study of the release of active substances from porous structures based on poly(3-hydroxybutyrate) (P3HB). The theoretical part describes the basic characteristics of polyhydroxyalkanoates, their effect on the organism and method of electrospinning. In the experimental part, solutions of poly(3-hydroxybutyrate) in a solvent mixture of dichloromethane and chloroform were electrospun in three different ratios. The morphology of the formed fibrous porous structures was assessed by scanning electron microscopy, based on which the active substance, the antibiotic Levofloxacin, was incorporated into suitable structures. Antimicrobial activity of the antibiotic released from prepared porous structures was tested by the agar diffusion method against gram-negative bacteria Escherichia coli and Serratia marcescens, the gram-positive bacterium Micrococcus luteus and against the yeast Candida glabrata. The results showed a significant antimicrobial effect of the prepared samples against all bacterial cultures, in the case of the culture of yeasts, no zones of inhibition occurred. Next, the course of the active substance release from the prepared electrospun meshes was studied spectrophotometrically depending on the morphological structure. It was found that the active substance was successfully incorporated into electrospun fibers and the course of the drug release depended on the morphology of P3HB electrospun meshes.
Release of active substances from porous structures based on poly(3-hydroxybutyrate) (PHB)
Černeková, Nicole ; Veselá, Mária (referee) ; Kovalčík, Adriána (advisor)
This bachelor thesis deals with the study of the release of active substances from porous structures based on poly(3-hydroxybutyrate) (P3HB). The theoretical part describes the basic characteristics of polyhydroxyalkanoates, their effect on the organism and method of electrospinning. In the experimental part, solutions of poly(3-hydroxybutyrate) in a solvent mixture of dichloromethane and chloroform were electrospun in three different ratios. The morphology of the formed fibrous porous structures was assessed by scanning electron microscopy, based on which the active substance, the antibiotic Levofloxacin, was incorporated into suitable structures. Antimicrobial activity of the antibiotic released from prepared porous structures was tested by the agar diffusion method against gram-negative bacteria Escherichia coli and Serratia marcescens, the gram-positive bacterium Micrococcus luteus and against the yeast Candida glabrata. The results showed a significant antimicrobial effect of the prepared samples against all bacterial cultures, in the case of the culture of yeasts, no zones of inhibition occurred. Next, the course of the active substance release from the prepared electrospun meshes was studied spectrophotometrically depending on the morphological structure. It was found that the active substance was successfully incorporated into electrospun fibers and the course of the drug release depended on the morphology of P3HB electrospun meshes.
3D Micromodels of porous structures
Pražák, Josef
The 2D micromodels of porous structures have been used already 30 years. They have brought much interesting information, but an actual application of them on the 3D reality has natural limitation. That is why 3D micromodels have been developed. A multi-layer structure seems to be optimal for the construction of them. It allows not only a wide variety of modeled porous structures but a rich statistics of experiment as well.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.