National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Electrospun fibers based on PVDF and nylon
Černohorský, Petr ; Sobola, Dinara (referee) ; Papež, Nikola (advisor)
Polymer nanofibers used for the construction of triboelectric nanogenerator (TENG) and piezoelectric nanogenerator (PENG) are new and promising technologies for energy recovery. Thanks to the generation of electrical energy based on mechanical movement (deformation), these fibers can find application in the field of self-powered electronic devices. In this work, three nanofibrous structures of materials were prepared by electrostatic spinning: pure polyvinylidene fluoride (PVDF), pure polyamide-6 (PA6) and their mixed combination PVDF / PA6. Non-destructive analyzes such as Raman spectroscopy, FTIR, XPS and electron microscopy were used to study the properties of nanofibers. Analyzes confirmed the positive effect of electrostatic spinning of polymers on the support of the formation of highly polar crystalline -phase in PVDF and , -phase in PA6. The structure arrangement of the nanofibrous material and their defects were observed by scanning electron microscopy (SEM). Furthermore, the contact angle of the wettability of the liquid on the surface was measured for the materials, and the permittivity was measured to monitor the dielectric properties. The described results make the mixed material PVDF / PA6 very promising for further research in the field of nanogenerators and functional textiles.
Polystyrene photoactive nanomaterials producing singlet oxygen
Henke, Petr ; Mosinger, Jiří (advisor) ; Dědic, Roman (referee) ; Kolářová, Hana (referee)
The increasing number of multidrug-resistant strains of bacteria call for alternatives to antibiotic therapy and, more generally, for the antimicrobial material as a component of prevention. Of particular interest is the photodynamic inactivation of bacteria and other pathogens caused by photogenerated singlet oxygen. This work is focused on the field of photoactive polymer nanofiber membranes and nanoparticles, generating singlet oxygen, suitable for medical applications. We prepared different types of photoactive modified polystyrene nanofiber membranes with encapsulated or externally bound porphyrin photosensitizers. These materials efficiently produce highly reactive and cytotoxic singlet oxygen capable of restricted diffusion into to the external environment. Our results demonstrate the crucial role of wettability for materials of this type with a short diffusion length of generated singlet oxygen, illustrate the effect of temperature and indicate their potential use as multifunctional materials. Due to their antimicrobial properties, these materials are suitable alternative to antibiotics and local antiseptics. With good breathability and short diffusion length of singlet oxygen good results can be expect in in vivo tests. From these nanofiber materials we also prepared photoactive extremely...
Electrospun fibers based on PVDF and nylon
Černohorský, Petr ; Sobola, Dinara (referee) ; Papež, Nikola (advisor)
Polymer nanofibers used for the construction of triboelectric nanogenerator (TENG) and piezoelectric nanogenerator (PENG) are new and promising technologies for energy recovery. Thanks to the generation of electrical energy based on mechanical movement (deformation), these fibers can find application in the field of self-powered electronic devices. In this work, three nanofibrous structures of materials were prepared by electrostatic spinning: pure polyvinylidene fluoride (PVDF), pure polyamide-6 (PA6) and their mixed combination PVDF / PA6. Non-destructive analyzes such as Raman spectroscopy, FTIR, XPS and electron microscopy were used to study the properties of nanofibers. Analyzes confirmed the positive effect of electrostatic spinning of polymers on the support of the formation of highly polar crystalline -phase in PVDF and , -phase in PA6. The structure arrangement of the nanofibrous material and their defects were observed by scanning electron microscopy (SEM). Furthermore, the contact angle of the wettability of the liquid on the surface was measured for the materials, and the permittivity was measured to monitor the dielectric properties. The described results make the mixed material PVDF / PA6 very promising for further research in the field of nanogenerators and functional textiles.
Polystyrene photoactive nanomaterials producing singlet oxygen
Henke, Petr
The increasing number of multidrug-resistant strains of bacteria call for alternatives to antibiotic therapy and, more generally, for the antimicrobial material as a component of prevention. Of particular interest is the photodynamic inactivation of bacteria and other pathogens caused by photogenerated singlet oxygen. This work is focused on the field of photoactive polymer nanofiber membranes and nanoparticles, generating singlet oxygen, suitable for medical applications. We prepared different types of photoactive modified polystyrene nanofiber membranes with encapsulated or externally bound porphyrin photosensitizers. These materials efficiently produce highly reactive and cytotoxic singlet oxygen capable of restricted diffusion into to the external environment. Our results demonstrate the crucial role of wettability for materials of this type with a short diffusion length of generated singlet oxygen, illustrate the effect of temperature and indicate their potential use as multifunctional materials. Due to their antimicrobial properties, these materials are suitable alternative to antibiotics and local antiseptics. With good breathability and short diffusion length of singlet oxygen good results can be expect in in vivo tests. From these nanofiber materials we also prepared photoactive extremely...
Polystyrene photoactive nanomaterials producing singlet oxygen
Henke, Petr
The increasing number of multidrug-resistant strains of bacteria call for alternatives to antibiotic therapy and, more generally, for the antimicrobial material as a component of prevention. Of particular interest is the photodynamic inactivation of bacteria and other pathogens caused by photogenerated singlet oxygen. This work is focused on the field of photoactive polymer nanofiber membranes and nanoparticles, generating singlet oxygen, suitable for medical applications. We prepared different types of photoactive modified polystyrene nanofiber membranes with encapsulated or externally bound porphyrin photosensitizers. These materials efficiently produce highly reactive and cytotoxic singlet oxygen capable of restricted diffusion into to the external environment. Our results demonstrate the crucial role of wettability for materials of this type with a short diffusion length of generated singlet oxygen, illustrate the effect of temperature and indicate their potential use as multifunctional materials. Due to their antimicrobial properties, these materials are suitable alternative to antibiotics and local antiseptics. With good breathability and short diffusion length of singlet oxygen good results can be expect in in vivo tests. From these nanofiber materials we also prepared photoactive extremely...
Polystyrene photoactive nanomaterials producing singlet oxygen
Henke, Petr ; Mosinger, Jiří (advisor) ; Dědic, Roman (referee) ; Kolářová, Hana (referee)
The increasing number of multidrug-resistant strains of bacteria call for alternatives to antibiotic therapy and, more generally, for the antimicrobial material as a component of prevention. Of particular interest is the photodynamic inactivation of bacteria and other pathogens caused by photogenerated singlet oxygen. This work is focused on the field of photoactive polymer nanofiber membranes and nanoparticles, generating singlet oxygen, suitable for medical applications. We prepared different types of photoactive modified polystyrene nanofiber membranes with encapsulated or externally bound porphyrin photosensitizers. These materials efficiently produce highly reactive and cytotoxic singlet oxygen capable of restricted diffusion into to the external environment. Our results demonstrate the crucial role of wettability for materials of this type with a short diffusion length of generated singlet oxygen, illustrate the effect of temperature and indicate their potential use as multifunctional materials. Due to their antimicrobial properties, these materials are suitable alternative to antibiotics and local antiseptics. With good breathability and short diffusion length of singlet oxygen good results can be expect in in vivo tests. From these nanofiber materials we also prepared photoactive extremely...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.