National Repository of Grey Literature 27 records found  previous11 - 20next  jump to record: Search took 0.02 seconds. 
Structuring of plasma polymers: new methods for fabrication of nano-architectured thin films
Nikitin, Daniil ; Shukurov, Andrey (advisor) ; Novák, Stanislav (referee) ; Straňák, Vítězslav (referee)
Title: Structuring of plasma polymers: new methods for fabrication of nano-architectured thin films Author: Daniil Nikitin Department / Institute: Department of Macromolecular Physics/Charles University Supervisor of the doctoral thesis: Doc. Ing. Andrey Shukurov, PhD, Department of Macromolecular Physics/Charles University Abstract: The PhD thesis aims at the investigation of nanostructures based on plasma polymers. The main attention is paid to the combination of a gas aggregation cluster source with plasma-assisted vapor phase deposition for the fabrication of metal-polymer nanocomposites with bactericidal potential. Copper nanoparticles were incorporated into a biocompatible matrix of plasma polymerized poly(ethylene oxide) (ppPEO). The efficiency of such nanocomposite against multi-drug resistant bacteria was demonstrated. It was found that the segmental dynamics of the plasma polymer significantly changed in the presence of nanoparticles as revealed by the measurements of the dynamic glass transition temperature. The nanoscale confinement crucially influences the non-fouling properties of poly(ethylene oxide). A separate chapter is dedicated to the examination of the nanoparticle formation, growth and transport inside the source. Copper and silver nanoparticles were detected in situ in the gas phase...
Depozition of hydrophobic fluorocarbon coatings by plasma polymerization methods
Petr, Martin
In this work we study the deposition of hydrophobic fluorocarbon coatings by magnetron sputtering of polymeric PTFE target. We show what is the influence of the conditions of the deposition process - the pressure in the chamber, the RF power - on the properties of the resulting CFx thin films (their chemical composition, morphology, wettability, barrier and optical properties, stability and possible bio-aplications). In this work we use a novel way to control the morphology and the chemical composition of the surface of thin films independently by using nano-particles, both metal (Pt, Cu, Al) and polymeric (C:H, Nylon). With nano-particles we can control the hydrophobicity of thin films and we can prepare super-hydrophobic films. Work has an experimental character.
Structuring of plasma polymers: new methods for fabrication of nano-architectured thin films
Nikitin, Daniil ; Shukurov, Andrey (advisor) ; Novák, Stanislav (referee) ; Straňák, Vítězslav (referee)
Title: Structuring of plasma polymers: new methods for fabrication of nano-architectured thin films Author: Daniil Nikitin Department / Institute: Department of Macromolecular Physics/Charles University Supervisor of the doctoral thesis: Doc. Ing. Andrey Shukurov, PhD, Department of Macromolecular Physics/Charles University Abstract: The PhD thesis aims at the investigation of nanostructures based on plasma polymers. The main attention is paid to the combination of a gas aggregation cluster source with plasma-assisted vapor phase deposition for the fabrication of metal-polymer nanocomposites with bactericidal potential. Copper nanoparticles were incorporated into a biocompatible matrix of plasma polymerized poly(ethylene oxide) (ppPEO). The efficiency of such nanocomposite against multi-drug resistant bacteria was demonstrated. It was found that the segmental dynamics of the plasma polymer significantly changed in the presence of nanoparticles as revealed by the measurements of the dynamic glass transition temperature. The nanoscale confinement crucially influences the non-fouling properties of poly(ethylene oxide). A separate chapter is dedicated to the examination of the nanoparticle formation, growth and transport inside the source. Copper and silver nanoparticles were detected in situ in the gas phase...
Plazmové opracování porézních povrchů
Vaidulych, Mykhailo ; Hanuš, Jan (advisor) ; Pavlík, Jaroslav (referee) ; Tichý, Milan (referee)
Title: Plasma treatment of porous structures Author: Mykhailo Vaidulych Department / Institute: Department of Macromolecular Physics Supervisor of the doctoral thesis: Prof. Assist. Jan Hanuš, Ph.D., Department of Macromolecular Physics Abstract: The thesis is focused on the implementation of low-temperature plasma for the modification of porous materials. Two main strategies are involved: functionalization through the deposition of functional nanocomposite coatings and low-pressure plasma etching. In the first case, a gas-phase step-by-step deposition process based on the combination of deposition of nanoparticles and thin films was developed to obtain super-wettable nanocomposite coatings on filtration membranes. It was shown that the deposition parameters of thin films and particles of plasma polymer can tune the wetting characteristic of the membranes whereas embedding copper nanoparticles endows them with antibacterial properties. As a result, highly efficient superhydrophobic/superoleophilic and smart superamphiphilic membranes were successfully fabricated for oil/water separation. Plasma processing in the atmosphere of argon, oxygen or nitrogen was utilized to modify hard metal/polymer nanocomposites (Ag/a-C:H) with potential to be used as functional coatings for bone implants. An anisotropic etching...
Plasma surface modification of glass fibers and its optimization
Širjovová, Veronika ; Knob, Antonín (referee) ; Čech, Vladimír (advisor)
Diploma thesis deals with glass fiber surface modification using plasma-enhanced chemical vapor deposition in order to prepare functional interface that enhances the properties of polymer composites. The effect of deposition conditions on shear strength was observed with respect to the chemical composition of the deposited film. Thin films were deposited on planar substrates and fibers using monomer tetravinylsilane in a mixture with oxygen at selected power of plasma discharge. Chemical composition of prepared material was analyzed by infrared spectroscopy. Planar substrate film adhesion was measured using the scratch test. The composite sample was prepared by embedding the surface modified fibers in unsaturated polyester resin, followed by the curing process. The cured composite sample underwent the short beam shear test.
Modification of polymeric substrates by means of non-equilibrium plasma
Kuzminova, Anna ; Kylián, Ondřej (advisor) ; Čech, Vladimír (referee) ; Novák, Stanislav (referee)
Title: Modification of polymeric substrates by means of non-equilibrium plasma Author: Anna Kuzminova Department: Department of Macromolecular Physics Supervisor of the doctoral thesis: doc. RNDr. Ondřej Kylián, Ph.D. Abstract: Processing of polymeric materials by means of non-equilibrium plasma is a topic that reaches increasing attention, which is due to the wide range of possible applications. As an example can be mentioned processing of polymeric foils used for food packaging, where plasma treatment enables to improve their functional properties (e.g. increase their printability or enhance their barrier properties). In the frame of this PhD. thesis two different strategies suitable for the modification of polymeric materials were followed. The first one was based on treatment of polymers by atmospheric plasma. The main attention was devoted to the investigation of influence of atmospheric pressure plasma on surface properties of 8 commonly used polymers, namely on their chemical composition, morphology and wettability. In addition, it was observed that plasma treatment causes also alteration of their mechanical properties, may lead to their substantial etching and in some cases improves their biocompatibility. The second studied strategy was based on coating of polymers with thin functional...
Plasma polymers in the nanostructured and nanocomposite coatings
Shelemin, Artem ; Biederman, Hynek (advisor) ; Čech, Vladimír (referee) ; Vyskočil, Jiří (referee)
Title: Plasma polymers in the nanostructured and nanocomposite coatings Author: Artem Shelemin Department / Institute: Department of the Macromolecular Physics Supervisor of the doctoral thesis: Prof. RNDr. Hynek Biederman, DrSc. Abstract: The thesis represents the main results of my research work aimed to study nanostructured and nanocomposite films of plasma polymer. A few alternative experimental approaches were developed and investigated which ranged from low pressure (gas aggregation cluster sources and glancing angle deposition) to atmospheric pressure (dielectric barrier discharge and plasma jet) plasma processing. The metal/metal oxide Ti/TiOx, AlOx and plasma polymer SiOx(CH), Nylon 6,6 nanoparticles were prepared. The analysis of morphology of deposited plasma polymer coatings was performed by AFM and SEM. The chemical composition of films was studied by XPS and FTIR. Keywords: plasma polymer, nanoparticle, thin film, nanostructures
Depozition of hydrophobic fluorocarbon coatings by plasma polymerization methods
Petr, Martin
In this work we study the deposition of hydrophobic fluorocarbon coatings by magnetron sputtering of polymeric PTFE target. We show what is the influence of the conditions of the deposition process - the pressure in the chamber, the RF power - on the properties of the resulting CFx thin films (their chemical composition, morphology, wettability, barrier and optical properties, stability and possible bio-aplications). In this work we use a novel way to control the morphology and the chemical composition of the surface of thin films independently by using nano-particles, both metal (Pt, Cu, Al) and polymeric (C:H, Nylon). With nano-particles we can control the hydrophobicity of thin films and we can prepare super-hydrophobic films. Work has an experimental character.
Preparation of nanostructured and nanocomposite thin films with plasma polymer matrix
Solař, Pavel ; Biederman, Hynek (advisor) ; Novák, Rudolf (referee) ; Tichý, Milan (referee)
Title: Preparation of nanostructured and nanocomposite thin films with plasma polymer matrix Author: Pavel Solař Department: Department of Macromolecular Physics, MFF, UK Supervisor of the doctoral thesis Prof. RNDr. Hynek Biederman, DrSc., Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University in Prague Abstract: This thesis is devoted to study of nanostructured thin films implementing metal and plasma polymer particles and columns. Process of formation of particles from various materials has been studied. The particles size, shape and chemical composition has been characterized relative to the deposition conditions. Transport of metal and plasma polymer particles inside the particle source and from the particle source to substrate has been investigated. The particles were used in composite films especially to produce films with controlled roughness e.g. for investigation of influence of roughness on adhesion of cells. Preparation of columnar films by Glancing Angle Deposition has been studied and the particles have been used as seeds for the columnar growth. Keywords: Nanoparticles, Glancing Angle Deposition, plasma polymer, composite thin film
Preparation of Nanocomposites of Metal Oxides in Plasma Polymer and Study of Their Properties
Polonskyi, Oleksandr ; Biederman, Hynek (advisor) ; Novák, Stanislav (referee) ; Kadlec, Stanislav (referee)
Title: Preparation of Nanocomposites of Metal Oxides in Plasma Polymer and Study of Their Properties Author: Oleksandr Polonskyi Department: Department of Macromolecular Physics, MFF UK Supervisor of the doctoral thesis: Prof. RNDr. Hynek Biederman, DrSc. Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University in Prague Abstract: This thesis is devoted to a study of nanocomposite films Al (Al oxide)/plasma polymer prepared by various techniques using magnetron sputtering, plasma polymerization and cluster beam deposition. The formation and deposition of metal/metal oxide nanoclusters using a gas aggregation cluster source (GAS) was also considered. The role of low concentration of oxygen in the aggregation gas on the process of Al and Ti cluster deposition was studied. Properties of the nanoclusters and nanocomposite films were characterized by various techniques. Morphology of the nanocomposites was examined by AFM, TEM or HRTEM and SEM. Elemental analysis and chemical composition of the films were studied by XPS and FTIR. Optical characterization of the prepared films was done by UV-Vis spectroscopy and spectroscopic ellipsometry. It has been shown that using GAS nanocomposite Al(AlxOy)/C:H may be prepared. Keywords: nanocomposite thin film, plasma polymer, metal...

National Repository of Grey Literature : 27 records found   previous11 - 20next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.