National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
System for scanning hydrogen cyanide absorption lines
Hošek, Martin ; Řeřucha, Šimon ; Hrabina, Jan ; Čížek, Martin ; Pravdová, Lenka ; Číp, Ondřej
The definition of both meter and second relies on precisely measured frequency. The convenient sources of such frequencies are lasers stabilized by molecular vapours. The He-Ne lasers stabilized by iodin vapours represent the cornerstone sources in the visible spectrum. On the other hand, the infrared spectrum (particularly the 1550 nm C-band) is of metrological interest thanks to its cost-effective, readily available components. The widely used absorption media at 1550 nm has been two acetylene isotopes (12C2H2, 13C2H2), while H13C14N represents an alternative covering a wider spectrum well corresponding to the telecommunication C-band. The 2ν3 rotational-vibrational band had been investigated, but due to the use of not-so-precise methods, the presented data feature high uncertainty compared to acetylene data. We represent methods that will lead to precise assessments of hydrogen cyanide's absorption line centres with the potential to introduce HCN to Mise en Pratique, making it an internationally recognized source of precise frequency for the realization of traceable laser etalons.
Utilization of hydrogen cyanide as an absorption media for laser spectroscopy
Hošek, Martin ; Řeřucha, Šimon ; Pravdová, Lenka ; Čížek, Martin ; Hrabina, Jan ; Číp, Ondřej
The main goal of our investigation is the use of hydrogen cyanide (concretely isotope H13C14N) as absorption medium for realisation of etalon of optical frequency. The advantage of HCN over typically used acetylene (isotopes 13C2H2 and 12C2H2) is the better availability and also the wider absorption spectrum in the 1550 nm wavelength band (telecommunication band). The hyperfine transitions in HCN were investigated in the 90‘, but because of technological limitations the measured data are not as precise as the data for C2H2. We aim on use of more developed methods (saturated absorption spectroscopy, optical frequency lock, beat-note against the optical frequency comb) for the measurement of more precise data of absorption lines of HCN. Our other goals will be to obtain the data enough precise to allow the use of them in Mise en pratique.
Evaluation of lenght of the Fabry-Perot cavity with ultra-low expansion spacer with optical frequency comb
Šmíd, Radek ; Čížek, Martin ; Číp, Ondřej
The ultra-low expansion materials play a crucial role in laser stabilization and they are essential for laser stalibization. Blocks made from ultra-low expansion material are used as a base for precise interferometric measurements and in AFM microscopes. In our experiment we have monitored the free spectral range (FSR) changes and absolute length of a Fabry-Perot cavity (FPC) with a spacer made from an ultra-low expansion ceramics (Zerodur) with the expansion coefficient (CTE) of 2.8 • 10-8K-1. Experiment was carried out in the vacuum chamber at the pressure as low as 1 O'5 Pa. A fiber based femtosecond mode-locked laser with 100 MHz repetition frequency and central wavelength of 1550 nm was locked to a GPS disciplined crystal oscillator with a short term stability better than 10"12 and long term stability controlled by GPS clocks. An auxiliary tunable DFB laser diode was locked to a certain optical mode of the FPC. A beat-note signal from optical mixing between the laser and a stabilized femtosecond frequency comb is detected and processed. The absolute optical frequency of this mode is defined by saturation to acetylene cell. The FPC spacer of Zerodur material of 175 mm length was analyzed during the temperature cycling process from 22 - 35°C. Measured CTE of the spacer material was (0.069 ± 0.005) • 10-6K-1. Material exhibited hysteresis in the spacer length up to 8 nm during cycling process.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.