National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Determination of mechanical properties of open ceramic foam structure using finite element method
Barančík, Milan ; Navrátil, Petr (referee) ; Skalka, Petr (advisor)
The thesis is concerned with creating of a computational model of open-cell ceramic foam and determining mechanical properties of open-cell ceramic foam using computational modeling. The geometry of Kelvin cell was used for creating the model of geometry of the foam. The model of geometry of ceramic foam structure was meshed with solid elements, with beam elements and with combination of rigid beam and beam elements. Elastic properties of the foam were determined by two types of mechanical loading. Young´s modulus and Poisson´s ratio were determined by tensile/compressive mechanical loading and shear modulus was determined by shear mechanical loading. The relationship between mechanical properties of the foam and the ratio of diameter of strut D and length of strut L was analysed in the thesis. A good agreement was found out between Young´s modulus determined by solid element based and Young´s modulus determined by modified beam based model of geometry of the foam structure – for ratio D/L up to 0,6. In the case of Poisson´s ratio a good agreement was determined up to D/L = 0,4. In conclusion the value of Young´s modulus 1,97 GPa which was determined by computational modeling was compared with the value 1,56 GPa which was determined experimentally on ceramic foam. This difference was caused by idealization of geometry of the real ceramic foam material. In addition, mechanical properties of the ceramic foam material are influenced by structural imperfections of the material.
Determination of mechanical properties of open ceramic foam structure using finite element method
Barančík, Milan ; Navrátil, Petr (referee) ; Skalka, Petr (advisor)
The thesis is concerned with creating of a computational model of open-cell ceramic foam and determining mechanical properties of open-cell ceramic foam using computational modeling. The geometry of Kelvin cell was used for creating the model of geometry of the foam. The model of geometry of ceramic foam structure was meshed with solid elements, with beam elements and with combination of rigid beam and beam elements. Elastic properties of the foam were determined by two types of mechanical loading. Young´s modulus and Poisson´s ratio were determined by tensile/compressive mechanical loading and shear modulus was determined by shear mechanical loading. The relationship between mechanical properties of the foam and the ratio of diameter of strut D and length of strut L was analysed in the thesis. A good agreement was found out between Young´s modulus determined by solid element based and Young´s modulus determined by modified beam based model of geometry of the foam structure – for ratio D/L up to 0,6. In the case of Poisson´s ratio a good agreement was determined up to D/L = 0,4. In conclusion the value of Young´s modulus 1,97 GPa which was determined by computational modeling was compared with the value 1,56 GPa which was determined experimentally on ceramic foam. This difference was caused by idealization of geometry of the real ceramic foam material. In addition, mechanical properties of the ceramic foam material are influenced by structural imperfections of the material.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.