National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Non-conventional data assimilation in high resolution numerical weather prediction model with study of the slow manifold of the model
Benáček, Patrik ; Brožková, Radmila (advisor) ; Derková, Mária (referee) ; Randriamampianina, Roger (referee)
Satellite instruments currently provide the largest source of infor- mation to today's data assimilation (DA) systems for numerical weather predic- tion (NWP). With the development of high-resolution models, the efficient use of observations at high density is essential to improve small-scale information in the weather forecast. However, a large amount of satellite radiances has to be removed from DA by horizontal data thinning due to uncorrelated observation error assumptions. Moreover, satellite radiances include systematic errors (biases) that may be even larger than the observation signal itself, and must be properly removed prior to DA. Although the Variational Bias Correction (VarBC) scheme is widely used by global NWP centers, there are still open questions regarding its use in Limited-Area Models (LAMs). This thesis aims to tackle the obser- vation error difficulties in assimilating polar satellite radiances in the meso-scale ALADIN system. Firstly, we evaluate spatial- and inter-channel error correla- tions to enhance the positive effect of data thinning. Secondly, we study satellite radiance bias characteristics with the key aspects of the VarBC in LAMs, and we compare the different VarBC configurations with regards to forecast performance. This work is a step towards improving the...
Non-conventional data assimilation in high resolution numerical weather prediction model with study of the slow manifold of the model
Benáček, Patrik ; Brožková, Radmila (advisor) ; Derková, Mária (referee) ; Randriamampianina, Roger (referee)
Satellite instruments currently provide the largest source of infor- mation to today's data assimilation (DA) systems for numerical weather predic- tion (NWP). With the development of high-resolution models, the efficient use of observations at high density is essential to improve small-scale information in the weather forecast. However, a large amount of satellite radiances has to be removed from DA by horizontal data thinning due to uncorrelated observation error assumptions. Moreover, satellite radiances include systematic errors (biases) that may be even larger than the observation signal itself, and must be properly removed prior to DA. Although the Variational Bias Correction (VarBC) scheme is widely used by global NWP centers, there are still open questions regarding its use in Limited-Area Models (LAMs). This thesis aims to tackle the obser- vation error difficulties in assimilating polar satellite radiances in the meso-scale ALADIN system. Firstly, we evaluate spatial- and inter-channel error correla- tions to enhance the positive effect of data thinning. Secondly, we study satellite radiance bias characteristics with the key aspects of the VarBC in LAMs, and we compare the different VarBC configurations with regards to forecast performance. This work is a step towards improving the...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.