National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Floor detection during elevator ride
Havelka, Martin ; Králík, Jan (referee) ; Krejsa, Jiří (advisor)
This diploma thesis deals with the detection of the current floor during elevator ride. This functionality is necessary for robot to move in multi-floor building. For this task, a fusion of accelerometric data during the ride of the elevator and image data obtained from the information display inside the elevator cabin is used. The research describes the already implemented solutions, data fusion methods and image classification options. Based on this part, suitable approaches for solving the problem were proposed. First, datasets from different types of elevator cabins were obtained. An algorithm for working with data from the accelerometric sensor was developed. A convolutional neural network, which was used to classify image data from displays, was selected and trained. Subsequently, the data fusion method was implemented. The individual parts were tested and evaluated. Based on their evaluation, integration into one functional system was performed. System was successfully verified and tested. Result of detection during the ride in different elevators was 97%.
Optimal state estimation of a navigation model system
Papež, Milan ; Havlena, Vladimír (referee) ; Dokoupil, Jakub (advisor)
This thesis presents an investigation of the possibility of using the fixed-point arithmetic in the inertial navigation systems, which use the local level navigation frame mechanization equations. Two square root filtering methods, the Potter's square root Kalman filter and UD factorized Kalman filter, are compared with respect to the conventional Kalman filter and its Joseph's stabilized form. The effect of rounding errors to the Kalman filter optimality and the covariance matrix or its factors conditioning is evaluated for a various lengths of the fractional part of the fixed-point computational word. Main contribution of this research lies in an evaluation of the minimal fixed-point arithmetic word length for the Phi-angle error model with noise statistics which correspond to the tactical grade inertial measurements units.
Floor detection during elevator ride
Havelka, Martin ; Králík, Jan (referee) ; Krejsa, Jiří (advisor)
This diploma thesis deals with the detection of the current floor during elevator ride. This functionality is necessary for robot to move in multi-floor building. For this task, a fusion of accelerometric data during the ride of the elevator and image data obtained from the information display inside the elevator cabin is used. The research describes the already implemented solutions, data fusion methods and image classification options. Based on this part, suitable approaches for solving the problem were proposed. First, datasets from different types of elevator cabins were obtained. An algorithm for working with data from the accelerometric sensor was developed. A convolutional neural network, which was used to classify image data from displays, was selected and trained. Subsequently, the data fusion method was implemented. The individual parts were tested and evaluated. Based on their evaluation, integration into one functional system was performed. System was successfully verified and tested. Result of detection during the ride in different elevators was 97%.
Optimal state estimation of a navigation model system
Papež, Milan ; Havlena, Vladimír (referee) ; Dokoupil, Jakub (advisor)
This thesis presents an investigation of the possibility of using the fixed-point arithmetic in the inertial navigation systems, which use the local level navigation frame mechanization equations. Two square root filtering methods, the Potter's square root Kalman filter and UD factorized Kalman filter, are compared with respect to the conventional Kalman filter and its Joseph's stabilized form. The effect of rounding errors to the Kalman filter optimality and the covariance matrix or its factors conditioning is evaluated for a various lengths of the fractional part of the fixed-point computational word. Main contribution of this research lies in an evaluation of the minimal fixed-point arithmetic word length for the Phi-angle error model with noise statistics which correspond to the tactical grade inertial measurements units.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.