National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
3D models of brain tumors
Fišer, Ondřej ; Novák, Josef (advisor) ; Bohačiaková, Dáša (referee)
Despite intensive research, glioblastoma multiforme remains one of the tumours of the central nervous system with the worst prognosis. The ability of glioblastoma cells to infiltrate brain tissue by forming invasive microtubular structures is stimulated by contact with adjacent non- tumor cells. Intercellular communication and the influence of the extracellular matrix create a specific microenvironment that affects cell signaling, proliferation, differentiation and response to pharmaceuticals. The recurrent form of glioblastoma often displays a much faster progression than the initial disease, which is attributed to the development of resistance to therapeutics and the preservation of the proliferative capacity of some tumour cells. The discovery of the stem- cells ability to self-aggregate in suspension has led to the creation of 3D in vitro models - brain organoids. They are much more complex that the established 2D models and their heterogeneity provides an environment simulating the in vivo state. This thesis aims to describe their use in brain tumour research and techniques for culturing 3D aggregates of neural lineage formed from induced or embryonic human stem cells with respect to their gradually increasing complexity. It also presents methods of addressing issues of hypoxia, organoid...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.