National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Role of tau phosphorylation in formation of tau envelopes
Karhanová, Adéla ; Lánský, Zdeněk (advisor) ; Štěpánek, Luděk (referee)
Tau is an intrinsically-disordered microtubule-associated protein important for axonal development and a critical regulator of microtubule functions in axons. Tau activity is controlled by phosphorylation and its deregulation resulting in tau hyperphosphorylation and aggregation has been linked to multiple neurodegenerative disorders, collectively termed tauopathies. On microtubules, tau molecules segregate into two kinetically distinct phases, consisting of either independently diffusing molecules or interacting molecules that form cohesive "envelopes" around microtubules. Tau envelopes regulate the action of other microtubule-associated proteins, such as the motility of molecular motors, and protect microtubules against degradation by microtubule-severing enzymes. How the formation, dynamics, and function of tau envelopes are regulated, however, is unknown. Here we show that tau phosphorylation impedes the formation and functioning of protective tau envelopes. Using a combination of reconstitution experiments and live cell imaging, we show that phosphorylated tau incorporates into tau envelopes and that it slows down the envelope growth. Importantly, we demonstrate that phosphorylated tau also destabilizes already existing envelopes leading to their disassembly. Together, our results demonstrate...
Roles of tubulin post-translational modifications in regulation of microtubule-based processes
Šliková, Pavlína ; Novák, Petr (advisor) ; Libusová, Lenka (referee)
Microtubular cytoskeleton plays crucial roles during diverse cellular processes, such as intracellular transport, cell motility and chromosome segregation during cytokinesis. Tubulin, the building block of microtubules, undergoes numerous post-translational modifications which affect microtubular dynamics and organization as well as their interaction with associated proteins. Understanding the role post-translational modifications play in the diversification of functions and properties of microtubules is key for our comprehension of the dynamics of the complex microtubule cytoskeleton. However, mechanisms behind the effect of post-translational modifications on microtubule cytoskeleton are not fully understood. In this work, we focus on the influence of post-translational modifications on microtubule polymerization and interaction with molecular motor kinesin-1. Using total internal fluorescence and interference reflection microscopy techniques, we here show that high levels of post-translational modifications on microtubules decrease the time of microtubule-kinesin interaction whereas binding affinity and median velocity are not significantly different on modified and unmodified microtubules. Further, we show that the absence of polyglutamylation on tubulin isotypes leads to a faster microtubule...
MAP code and regulation of microtubule-based processes
Karhanová, Adéla ; Lánský, Zdeněk (advisor) ; Tomášová, Štěpánka (referee)
Microtubule associated proteins (MAPs) are considered as key regulators of molecular trafficking in cells. Even though their malfunctioning results in severe pathologies, such as neurodegenerative disorders, the regulatory roles of these proteins remain under debate. Since MAPs bind to the cytoskeleton, this structure has to be vital for the function of MAPs. Microtubules, a highly dynamic type of cytoskeletal structure, have been given extra attention due to their association with cell division and vital functions in neurons. Microtubules can undergo post-translational modifications that affect molecular motors as well as binding of other proteins, such as MAPs. Whether post-translational modifications of microtubules regulate the distribution of MAPs is so far not sufficiently documented. However, MAPs have been shown to cooperatively form cohesive envelopes on the microtubules and thereby regulate the access of motors and severing enzymes. As there are many types of MAPs and they are mutually exclusive, a hypothesis of a regulatory 'MAP code' emerged recently in the literature. Using available literature, this review will try to introduce the new model of MAP code and provide some background information on previous research on this topic.
Regulation of microtubule dynamics revealed by single-molecule TIRF and IRM microscopy
Zhernov, Ilia ; Lánský, Zdeněk (advisor) ; Cifra, Michal (referee) ; Varga, Vladimír (referee)
The microtubular cytoskeleton is a ubiquitous and highly diverse biopolymer network present in all eukaryotic cells. Microtubules stochastically alternate between phases of growth and shrinkage. Cells take advantage of this dynamicity to generate forces for essential processes, such as cell division, motility or morphogenesis. Regulating the microtubule dynamics enables cells to adaptively respond to a wide range of tasks and conditions. Molecular mechanisms underpinning the regulation are not fully understood. Using a bottom-up approach and the combination of single molecule total internal reflection fluorescence (TIRF) microscopy and interference reflection microscopy (IRM), we here reconstituted and explored two dynamic cytoskeletal systems. (i) Microtubule doublets, comprising incomplete B-microtubule on the surface of a complete A- microtubule, provide an essential structural scaffold for flagella. Despite the fundamental role of microtubule doublets, the molecular mechanism governing their formation is unknown. We here demonstrate an inhibitory role of tubulin C-terminus in microtubule doublet assembly. By partial enzymatic digestion of polymerized microtubules followed by the addition of free tubulin in the presence of a stabilizing agent, we assembled microtubule doublets and revealed the B-...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.