National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Electrical behaviour of polymeric composites with expanded graphite
Šimonek, Michal ; Petruš, Josef (referee) ; Kučera, František (advisor)
Electrically conductive thermoplastic composites made from graphene nanoplatelets or graphene precursors are a promising branch of new functional materials. Graphene nanocomposites were prepared via processing in an internal mixer from four extrusion grade polyethylenes (PE) and expanded graphite (EG). As a method of possible improvement of EG dispersion, compounding in presence of various compatibilizers is examined. Melt compounding was performed for 10 min at 200 °C and 60 rpm. The electrical conductivity of compression-molded samples was determined from a current voltage characteristic or direct resistance measurement. Composite morphology was characterized by scanning electron microscopy. Depending on the PE matrix and compatibilizer structure, different electrical conductivities and morphologies were observed, which corresponded in agreement with either percolation theory or the random-resistor network of Miller and Abrahams models. Substantial reduction of percolation threshold was achieved in compatibilized ultra-low density polyethylene where percolation occurred at 3,92 % vol.
Electrical behaviour of polymeric composites with expanded graphite
Šimonek, Michal ; Petruš, Josef (referee) ; Kučera, František (advisor)
Electrically conductive thermoplastic composites made from graphene nanoplatelets or graphene precursors are a promising branch of new functional materials. Graphene nanocomposites were prepared via processing in an internal mixer from four extrusion grade polyethylenes (PE) and expanded graphite (EG). As a method of possible improvement of EG dispersion, compounding in presence of various compatibilizers is examined. Melt compounding was performed for 10 min at 200 °C and 60 rpm. The electrical conductivity of compression-molded samples was determined from a current voltage characteristic or direct resistance measurement. Composite morphology was characterized by scanning electron microscopy. Depending on the PE matrix and compatibilizer structure, different electrical conductivities and morphologies were observed, which corresponded in agreement with either percolation theory or the random-resistor network of Miller and Abrahams models. Substantial reduction of percolation threshold was achieved in compatibilized ultra-low density polyethylene where percolation occurred at 3,92 % vol.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.