National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Multi-electrode system of ionization detector for environmental scanning electrone microscope
Uhlář, Vít ; Špinka, Jiří (referee) ; Jirák, Josef (advisor)
Thesis deals with environmental scanning electron microscopy and with detection of signal electrons by using ionization detector. First part talks about the principle of environmental scanning electron microscope. Second part describes signals generated by interaction of primary electron beam with sample. Third section explains the principle of impact ionization and ionization detector. Experimental part deals with usage of segmental ionization detector and with measuring of signal amplification from copper and platinum. Thesis also examines arrangement of electrodes of ionisation detector on material contrast and examines also on influence of voltage contrast on base - emitter junction of an NPN bipolar transistor. All experiments were carried out in dependency on saturated water vapour pressure in sample chamber.
Contrast in image aquired by scintillation SE detector for VP SEM
Koudela, Oldřich ; Špinka, Jiří (referee) ; Jirák, Josef (advisor)
First part of this thesis is a theoretical essay which deals with the basics of scanning electron microscopy, with structure and function of a scanning electron microscope, its’ special case of an various pressure scanning electron microscope, electron interaction with surrounding environment and with a scintillation detector. The applied part of the thesis is focused on evaluation of material contrast on Cu-W specimen. Material contrast is evaluated for different pressures of water vapors in the microscope specimen chamber and for different detection conditions.
Multi-electrode system of ionization detector for environmental scanning electrone microscope
Uhlář, Vít ; Špinka, Jiří (referee) ; Jirák, Josef (advisor)
Thesis deals with environmental scanning electron microscopy and with detection of signal electrons by using ionization detector. First part talks about the principle of environmental scanning electron microscope. Second part describes signals generated by interaction of primary electron beam with sample. Third section explains the principle of impact ionization and ionization detector. Experimental part deals with usage of segmental ionization detector and with measuring of signal amplification from copper and platinum. Thesis also examines arrangement of electrodes of ionisation detector on material contrast and examines also on influence of voltage contrast on base - emitter junction of an NPN bipolar transistor. All experiments were carried out in dependency on saturated water vapour pressure in sample chamber.
Multi-electrode system of ionization detector for environmental scanning electrone microscope
Uhlář, Vít ; Špinka, Jiří (referee) ; Jirák, Josef (advisor)
Thesis deals with environmental scanning electron microscopy and with detection of signal electrons by using ionization detector. First part talks about the principle of environmental scanning electron microscope. Second part describes signals generated by interaction of primary electron beam with sample. Third section explains the principle of impact ionization and ionization detector. Experimental part deals with usage of segmental ionization detector and with measuring of signal amplification from copper and platinum. Thesis also examines arrangement of electrodes of ionisation detector on material contrast and examines also on influence of voltage contrast on base - emitter junction of an NPN bipolar transistor. All experiments were carried out in dependency on saturated water vapour pressure in sample chamber.
Contrast in image aquired by scintillation SE detector for VP SEM
Koudela, Oldřich ; Špinka, Jiří (referee) ; Jirák, Josef (advisor)
First part of this thesis is a theoretical essay which deals with the basics of scanning electron microscopy, with structure and function of a scanning electron microscope, its’ special case of an various pressure scanning electron microscope, electron interaction with surrounding environment and with a scintillation detector. The applied part of the thesis is focused on evaluation of material contrast on Cu-W specimen. Material contrast is evaluated for different pressures of water vapors in the microscope specimen chamber and for different detection conditions.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.