National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Development of antimicrobial wound healing nanostructure biomaterials
Hanák, Jan ; Wikarská, Monika (referee) ; Márová, Ivana (advisor)
The bachelor thesis is focused on optimizing the production of nanoparticles with a bioactive component - especially on enzymes and antibiotics encapsulated into lipozomes. Nanoparticles with active substances could be used in the field of pharmacy or cosmetology. In the theoretical part the composition of the skin, skin injuries, and wound covers are described. The materials used for the preparation of nanoparticles and nanofibers are characterized as well as processes to produce such nanomaterials. Enzymes, antimicrobial drugs, and methods for determining antimicrobial activity are mentioned in this section, too. The practical part deals with the characterization and optimization of the formation of lipozome particles with encapsulated enzymes. The formed particles were divided into two groups. The first type of particles were pure lipozomes, while the second ones enriched by polyhydroxybutyrate to increase the encapsulation efficiency and improve the stability of the particles. The enzymes bromelain and lysozyme were selected for the highest encapsulation efficiency. The encapsulation of these two enzymes took place in two ways - by thin film hydration and by sonication method. Both methods showed high encapsulation efficiency, but the sonication method proved to be unsuitable due to enzyme denaturation. The proteolytic activity of the released enzymes from the particles was measured. The stability of the particles was monitored in a physiological and aquatic environment by measuring the zeta potential for up to 28 days. Moreover, the enzymes, ampicillin, and particles created by sonication were subsequently subjected to antimicrobial tests by using two test bacterial strains. Finally, alginate particles with encapsulated enzymes were also formed, then the encapsulation efficiency and proteolytic activity of the enzyme were measured. In this study also other methods of encapsulation of active substances are outlined, which could be possibly used to produce nanomaterials suitable for wound healing.
Development of antimicrobial wound healing nanostructure biomaterials
Hanák, Jan ; Wikarská, Monika (referee) ; Márová, Ivana (advisor)
The bachelor thesis is focused on optimizing the production of nanoparticles with a bioactive component - especially on enzymes and antibiotics encapsulated into lipozomes. Nanoparticles with active substances could be used in the field of pharmacy or cosmetology. In the theoretical part the composition of the skin, skin injuries, and wound covers are described. The materials used for the preparation of nanoparticles and nanofibers are characterized as well as processes to produce such nanomaterials. Enzymes, antimicrobial drugs, and methods for determining antimicrobial activity are mentioned in this section, too. The practical part deals with the characterization and optimization of the formation of lipozome particles with encapsulated enzymes. The formed particles were divided into two groups. The first type of particles were pure lipozomes, while the second ones enriched by polyhydroxybutyrate to increase the encapsulation efficiency and improve the stability of the particles. The enzymes bromelain and lysozyme were selected for the highest encapsulation efficiency. The encapsulation of these two enzymes took place in two ways - by thin film hydration and by sonication method. Both methods showed high encapsulation efficiency, but the sonication method proved to be unsuitable due to enzyme denaturation. The proteolytic activity of the released enzymes from the particles was measured. The stability of the particles was monitored in a physiological and aquatic environment by measuring the zeta potential for up to 28 days. Moreover, the enzymes, ampicillin, and particles created by sonication were subsequently subjected to antimicrobial tests by using two test bacterial strains. Finally, alginate particles with encapsulated enzymes were also formed, then the encapsulation efficiency and proteolytic activity of the enzyme were measured. In this study also other methods of encapsulation of active substances are outlined, which could be possibly used to produce nanomaterials suitable for wound healing.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.