National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Astrocyte volume changes in alpha-syntrophin deficient mice
Mikešová, Michaela ; Anděrová, Miroslava (advisor) ; Vargová, Lýdia (referee)
(EN) The formation of brain oedema, which accompanies ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to extracellular K+ elevation and neurotransmitter accumulation in the extracellular space. An increased uptake of these osmotically active substances, predominantly provided by astrocytes, is accompanied by intracellular water accumulation via aquaporin-4 (AQP4). Since it has been shown that the removal of perivascular AQP4 via the deletion of α- syntrophin, which is the protein responsible for anchoring AQP4 on the astrocytic membrane (Neely et al. 2001), delays oedema formation and K+ clearance (Amiry-Moghaddam et al. 2003), we aimed to elucidate how the alpha-syntrophin deletion affects astrocyte volume changes in the cortex during pathological states, such as hypoosmotic stress or oxygen- glucose deprivation (OGD), using three-dimensional (3D) confocal morphometry in situ. In order to visualize individual astrocytes that lack alpha-syntrophin, double transgenic mice (GFAP/EGFP/α-Syn-/- ) were generated by crossbreeding GFAP-EGFP mice with α- syntrophin knockout mice. 3D-confocal morphometry revealed that alpha-syntrophin deletion did not alter astrocyte swelling during hypoosmotic stress or their recovery in isotonic solution;...
Astrocyte volume changes in alpha-syntrophin deficient mice
Mikešová, Michaela ; Anděrová, Miroslava (advisor) ; Vargová, Lýdia (referee)
(EN) The formation of brain oedema, which accompanies ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to extracellular K+ elevation and neurotransmitter accumulation in the extracellular space. An increased uptake of these osmotically active substances, predominantly provided by astrocytes, is accompanied by intracellular water accumulation via aquaporin-4 (AQP4). Since it has been shown that the removal of perivascular AQP4 via the deletion of α- syntrophin, which is the protein responsible for anchoring AQP4 on the astrocytic membrane (Neely et al. 2001), delays oedema formation and K+ clearance (Amiry-Moghaddam et al. 2003), we aimed to elucidate how the alpha-syntrophin deletion affects astrocyte volume changes in the cortex during pathological states, such as hypoosmotic stress or oxygen- glucose deprivation (OGD), using three-dimensional (3D) confocal morphometry in situ. In order to visualize individual astrocytes that lack alpha-syntrophin, double transgenic mice (GFAP/EGFP/α-Syn-/- ) were generated by crossbreeding GFAP-EGFP mice with α- syntrophin knockout mice. 3D-confocal morphometry revealed that alpha-syntrophin deletion did not alter astrocyte swelling during hypoosmotic stress or their recovery in isotonic solution;...
Volume-regulated anion channels in astrocytes- in vitro and in situ analysis
Harantová, Lenka ; Anděrová, Miroslava (advisor) ; Vargová, Lýdia (referee)
Astrocytes need to preserve constant volume in the face of osmolarity perturbations to function properly. To regain their original volume after hyposmotically induced swelling, they extrude intracellular electrolytes and organic osmolytes, such as inorganic ions, excitative amino acids or polyols, accompanied by osmotically driven water. This process is termed regulatory volume decrease and is ensured by various ion channels and transporters. Recently, much attention has been focused on the ubiquitous volume-regulated anion channels activated by cell swelling. VRACs are moderately outwardly rectifying with intermediary conductance, permeable to inorganic anions and organic osmolytes and sensitive to broad-spectrum anion channels blockers. Using patch-clamp technique we aimed to characterize VRACs in cultured cortical astrocytes isolated from neonatal Wistar rats and to elucidate the effect of intracellular Na+ on VRAC activity. In addition, we also intended to characterize these channels in situ in brain slices of 10 - 12 days old rats, focusing mainly on hippocampal astrocytes. To induce astrocytic swelling, we exposed astrocytes to hypotonic solution (250 mOsm). In agreement with previous findings, we showed that cultured cortical astrocytes activate VRAC currents upon exposure to hypotonic stress, which...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.