National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Nuclear magnetic resonance of Pb(x)Ba(1-x)(FeNb)0.5O3 perovskites
Adamec, Martin ; Chlan, Vojtěch (advisor) ; Kohout, Jaroslav (referee)
Temperature dependences of nuclear magnetic resonance spectra of isotopes 207 Pb, 137 Ba, and 93 Nb in polycrystalline samples of PbxBa1-x(FeNb)0.5O3, with x = 0 (BFN), 0.5 (PBFN), 1 (PFN) and in Pb(FeNb)0.5O3 single crystal (PFN SC) were acquired. Measured nuclear magnetic resonance spectra are analyzed in this work. The temperature dependence of the spectra show strong broadening with decreasing temperature. Part of the temperature dependences of nuclear magnetic resonance spectra did not comply with expected characteristics. Possible hypotheses for interpretation of such behavior are discussed in the text. Probable arrangement of Fe and Nb cations in PFN and BFN phases is deduced and, based on these differences, the contrast in Néel temperatures of these phases is explained.
Hyperfine interactions in multiferroics containing iron
Kmječ, Tomáš ; Kohout, Jaroslav (advisor)
Multiferroic materials, in which spontaneous orderings (especially magnetic and electrical, in some cases elastic) jointly exist and may mutually interact, are currently in the center of attention in many fields of research due to their high application potential. They are already used in many applications, as in various sensors, microwave filters or electro / magneto- mechanical manipulators and actuators. Nevertheless, many features of microstructure and moment arrangements are not yet fully explained and understood. The presented work is mostly experimental and focuses on the investigation of several promising multiferroic materials: Pb1 − xBax(Fe0.5Nb0.5)O3 (x = 0 - 1) and Pb(Fe0.5Sb0.5)O3 with a perovskite structure and labeled as multiferroics of the I. type according to the Khomsky classification, BaYFeO4, which belongs to the multiferroics of the II. Khomsky class, and LiFePO4, which is a potentially multiferroic substance containing Fe2+ and are used in electric accumulators at present. Mössbauer spectroscopy of the 57 Fe isotope was used as a key experimental method, which can provide new information about the local arrangement in the vicinity of resonantly absorbing nuclei in the investigated substances. Data evaluation and interpretation would not be possible without the using results...
Hyperfine interactions in multiferroics containing iron
Kmječ, Tomáš ; Kohout, Jaroslav (advisor) ; Mašláň, Miroslav (referee) ; Šepelák, Vladimír (referee)
Multiferroic materials, in which spontaneous orderings (especially magnetic and electrical, in some cases elastic) jointly exist and may mutually interact, are currently in the center of attention in many fields of research due to their high application potential. They are already used in many applications, as in various sensors, microwave filters or electro / magneto- mechanical manipulators and actuators. Nevertheless, many features of microstructure and moment arrangements are not yet fully explained and understood. The presented work is mostly experimental and focuses on the investigation of several promising multiferroic materials: Pb1 − xBax(Fe0.5Nb0.5)O3 (x = 0 - 1) and Pb(Fe0.5Sb0.5)O3 with a perovskite structure and labeled as multiferroics of the I. type according to the Khomsky classification, BaYFeO4, which belongs to the multiferroics of the II. Khomsky class, and LiFePO4, which is a potentially multiferroic substance containing Fe2+ and are used in electric accumulators at present. Mössbauer spectroscopy of the 57 Fe isotope was used as a key experimental method, which can provide new information about the local arrangement in the vicinity of resonantly absorbing nuclei in the investigated substances. Data evaluation and interpretation would not be possible without the using results...
Hyperfine interactions in maghemite and magnetite particles
Křišťan, Petr
Thesis is aimed at studying of magnetic iron oxide particles of submicron and nanoscale dimensions by means of nuclear magnetic resonance (NMR). 57 Fe NMR inves- tigations were carried out in composite bentonite/maghemite with respect to tempera- ture of calcination (Tcalc) during the sample preparation and in magnetite submicron powders with respect to various range of the particles size. One of the main findings is that increasing Tcalc improves resolution in the NMR spectra, which is most likely connected with higher degree of atomic ordering in the spinel structure. Evaluating the integral intensities of NMR spectra allowed us to determine the relative content of maghemite phase in particular samples of the series: the content rapidly grows for Tcalc up to ∼420 deg. An approach to distinguish signal from tetrahedral and octahedral irons was developed and tested on pure maghemite sample. Analysis based on vacancy- distribution models was performed in the spinel structure and the results were compared to the experiment. 57 Fe NMR spectra in submicron magnetite samples were found to differ markedly from spectrum of a single crystal. It was concluded that the investigated powders possess high amount of defects in the crystal structure or contain additional phase (probably closely related to the maghemite phase).
Nuclear magnetic resonance of Pb(x)Ba(1-x)(FeNb)0.5O3 perovskites
Adamec, Martin ; Chlan, Vojtěch (advisor) ; Kohout, Jaroslav (referee)
Temperature dependences of nuclear magnetic resonance spectra of isotopes 207 Pb, 137 Ba, and 93 Nb in polycrystalline samples of PbxBa1-x(FeNb)0.5O3, with x = 0 (BFN), 0.5 (PBFN), 1 (PFN) and in Pb(FeNb)0.5O3 single crystal (PFN SC) were acquired. Measured nuclear magnetic resonance spectra are analyzed in this work. The temperature dependence of the spectra show strong broadening with decreasing temperature. Part of the temperature dependences of nuclear magnetic resonance spectra did not comply with expected characteristics. Possible hypotheses for interpretation of such behavior are discussed in the text. Probable arrangement of Fe and Nb cations in PFN and BFN phases is deduced and, based on these differences, the contrast in Néel temperatures of these phases is explained.
Hyperfine interactions in maghemite and magnetite particles
Křišťan, Petr
Thesis is aimed at studying of magnetic iron oxide particles of submicron and nanoscale dimensions by means of nuclear magnetic resonance (NMR). 57 Fe NMR inves- tigations were carried out in composite bentonite/maghemite with respect to tempera- ture of calcination (Tcalc) during the sample preparation and in magnetite submicron powders with respect to various range of the particles size. One of the main findings is that increasing Tcalc improves resolution in the NMR spectra, which is most likely connected with higher degree of atomic ordering in the spinel structure. Evaluating the integral intensities of NMR spectra allowed us to determine the relative content of maghemite phase in particular samples of the series: the content rapidly grows for Tcalc up to ∼420 deg. An approach to distinguish signal from tetrahedral and octahedral irons was developed and tested on pure maghemite sample. Analysis based on vacancy- distribution models was performed in the spinel structure and the results were compared to the experiment. 57 Fe NMR spectra in submicron magnetite samples were found to differ markedly from spectrum of a single crystal. It was concluded that the investigated powders possess high amount of defects in the crystal structure or contain additional phase (probably closely related to the maghemite phase).
Hyperfine interactions in maghemite and magnetite particles
Křišťan, Petr ; Štěpánková, Helena (advisor) ; Procházka, Ivan (referee)
Thesis is aimed at studying of magnetic iron oxide particles of submicron and nanoscale dimensions by means of nuclear magnetic resonance (NMR). 57 Fe NMR inves- tigations were carried out in composite bentonite/maghemite with respect to tempera- ture of calcination (Tcalc) during the sample preparation and in magnetite submicron powders with respect to various range of the particles size. One of the main findings is that increasing Tcalc improves resolution in the NMR spectra, which is most likely connected with higher degree of atomic ordering in the spinel structure. Evaluating the integral intensities of NMR spectra allowed us to determine the relative content of maghemite phase in particular samples of the series: the content rapidly grows for Tcalc up to ∼420 deg. An approach to distinguish signal from tetrahedral and octahedral irons was developed and tested on pure maghemite sample. Analysis based on vacancy- distribution models was performed in the spinel structure and the results were compared to the experiment. 57 Fe NMR spectra in submicron magnetite samples were found to differ markedly from spectrum of a single crystal. It was concluded that the investigated powders possess high amount of defects in the crystal structure or contain additional phase (probably closely related to the maghemite phase).

Interested in being notified about new results for this query?
Subscribe to the RSS feed.