National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Relaxivity of magnetic nanoparticles
Kubíčková, Lenka ; Kohout, Jaroslav (advisor) ; Lančok, Adriana (referee)
Magnetic nanoparticles have found broad applications in medicine, in particular as contrast agents for T1- and T2-weighted magnetic resonance imaging (MRI). The ability of a contrast agent to influence the proton relaxation rate in a tissue is described by its relaxivity. In the submitted bachelor thesis we characterise physical properties of samples of ε-Fe2O3 nanoparticles coated with amorphous silica (SiO2), particularly with the aim to determine the dependences of their relaxivities on the magnetic field, temperature and thickness of silica coating. The distribution of the particle sizes was derived from the TEM pictures giving the median ~ 20 nm and the thickness of the silica coating ~4; 8; 13; 19 nm. The lattice parameters and presence of ˂ 2% admixtures of α phase were ascertained by XRD analysis; hyperfine parameters obtained by Mössbauer spectroscopy indicate no change of magnetic properties of the particles by silica coating. The relative amount of ε-Fe2O3 and SiO2 in the samples was specified from the magnetic measurements. Aqueous suspensions of different concentrations of coated nanoparticles were prepared, and their relaxivities r1, r2 were measured in different magnetic fields. Temperature dependence of relaxivities of a chosen sample was obtained in fields 0.47 T and 11.75 T....
Hyperfine Interactions in Ferrites with Spinel Structure
Chlan, Vojtěch
Title: Hyperfine Interactions in Ferrites with Spinel Structure Author: Vojtěch Chlan Faculty of Mathematics and Physics, Charles University in Prague Supervisor: Prof. RNDr. Helena Štěpánková, CSc. Abstract: Ferrite systems with spinel structure, manganese ferrite, lithium ferrite and magnetite, are studied experimentally by nuclear magnetic resonance (NMR) spectroscopy and from the first principles by electron structure calculations based on density functional theory (DFT). Manganese ferrites with various degrees of manganese-iron inversion and with different manganese contents are investigated, with respect to magnetic structure and cationic arrangement. An approach for NMR spectra interpretation is elaborated on ordered lithium ferrite, consisting in matching the calculated hyperfine field anisotropy with experimental results. This method is then applied to low temperature structure of magnetite, showing a promising path towards solving its complicated structure, orbital and charge ordering. The switching of magnetic easy axis induced by external magnetic field is observed in magnetite and the accompanying structural changes are studied by means of magnetic and NMR measurements. Magnetite with cationic vacancies is investigated by analyzing satellite structure induced by the vacancies; it is shown that...
Hyperfine interactions and electronic structure of magnetite
Řezníček, Richard ; Štěpánková, Helena (advisor) ; Máca, František (referee) ; Schneeweiss, Oldřich (referee)
The present work focuses on analyses of the experimental 57 Fe nuclear magnetic resonance data and the results of ab initio calculations in order to achieve deeper insight into the hyperfine and electronic structure of magnetite both below and above the Verwey phase transition. Parameters of hyperfine interactions and electronic structure data of the Cc phase of magnetite were extracted from the results of ab initio calculations based on the recently reported crystal structure. Published experimental dependences of the 57 Fe nuclear magnetic resonance frequencies on the external magnetic field direction were quantitatively reanalyzed, yielding hyperfine anisotropy data, which were compared to the analogous hyperfine field parameters from the ab initio calculations. The findings were interpreted in the context of up-to-date charge ordering models for magnetite. Attention was also paid to the impact of various cationic substitutions and defects on the electronic structure and hyperfine interactions in magnetite manifested in the 57 Fe nuclear magnetic resonance spectra: below the Verwey transition, signal intensity shifts in the spectra were analyzed; above the Verwey transition, the mean field model was adapted for an analysis of temperature dependence of satellite signal frequencies, while the anomalous...
Relaxivity of magnetic nanoparticles
Kubíčková, Lenka ; Kohout, Jaroslav (advisor) ; Lančok, Adriana (referee)
Magnetic nanoparticles have found broad applications in medicine, in particular as contrast agents for T1- and T2-weighted magnetic resonance imaging (MRI). The ability of a contrast agent to influence the proton relaxation rate in a tissue is described by its relaxivity. In the submitted bachelor thesis we characterise physical properties of samples of ε-Fe2O3 nanoparticles coated with amorphous silica (SiO2), particularly with the aim to determine the dependences of their relaxivities on the magnetic field, temperature and thickness of silica coating. The distribution of the particle sizes was derived from the TEM pictures giving the median ~ 20 nm and the thickness of the silica coating ~4; 8; 13; 19 nm. The lattice parameters and presence of ˂ 2% admixtures of α phase were ascertained by XRD analysis; hyperfine parameters obtained by Mössbauer spectroscopy indicate no change of magnetic properties of the particles by silica coating. The relative amount of ε-Fe2O3 and SiO2 in the samples was specified from the magnetic measurements. Aqueous suspensions of different concentrations of coated nanoparticles were prepared, and their relaxivities r1, r2 were measured in different magnetic fields. Temperature dependence of relaxivities of a chosen sample was obtained in fields 0.47 T and 11.75 T....
Hyperfine Interactions in Ferrites with Spinel Structure
Chlan, Vojtěch
Title: Hyperfine Interactions in Ferrites with Spinel Structure Author: Vojtěch Chlan Faculty of Mathematics and Physics, Charles University in Prague Supervisor: Prof. RNDr. Helena Štěpánková, CSc. Abstract: Ferrite systems with spinel structure, manganese ferrite, lithium ferrite and magnetite, are studied experimentally by nuclear magnetic resonance (NMR) spectroscopy and from the first principles by electron structure calculations based on density functional theory (DFT). Manganese ferrites with various degrees of manganese-iron inversion and with different manganese contents are investigated, with respect to magnetic structure and cationic arrangement. An approach for NMR spectra interpretation is elaborated on ordered lithium ferrite, consisting in matching the calculated hyperfine field anisotropy with experimental results. This method is then applied to low temperature structure of magnetite, showing a promising path towards solving its complicated structure, orbital and charge ordering. The switching of magnetic easy axis induced by external magnetic field is observed in magnetite and the accompanying structural changes are studied by means of magnetic and NMR measurements. Magnetite with cationic vacancies is investigated by analyzing satellite structure induced by the vacancies; it is shown that...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.